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PREFACE

In support of the Office of Technical Assistance of the Urban

Mass Transportation Administration (UMTA) , the Transportation Systems

Center is conducting analytical and experimental studies to relate transit

truck design characteristics to wheel rail forces and wheel rail wear

rates. The results of these studies are expected to provide rail transit

systems with options for reducing the wheel rail wear rates experienced by

transit properties while maintaining and improving equipment performance.

In the past decade there have been significant efforts towards

developing steerable truck configurations which employ direct connections

between axles and supplemental linkages connecting the axles to the car-

body to aid in steering while maintaining the speed capacity of the truck

design. Under contracts DOT-TSC-1739 and DOT— 1TS£-1740 with the Budd

Company and with the Urban Transportation Development Corporation design

studies have been conducted for the retrofit of existing trucks to linkage

steered configurations.

Under an earlier contract with the U. S. Department of Transportation

Office of University Research (DOT-OS- 70052) , the Department of Mechanical

Engineering of the Massachusetts Institute of Technology conducted

studies of the performance limits of conventional and self-steered trucks

for intercity passenger application. This study used a curve negotiation

criteria of preventing either flange contact or wheel slip which is

inappropriate for the sharp curves typical of transit application.

The study described in this document extends the previous analyses

to include regions of significant flange contact for sharper curve radii,

to include a curving index which estimates wear rates under flange contact,

iii



to include the dynamic curving problems associated with curve entry and

exit and to consideration of the performance achievable with forced

steering mechanizations which employ truck to carbody linkages.

The work was performed under contract to the Transportation Systems

Center in support of the Urban Mass Transportation Administration. The

authors would like to acknowledge Dr. Herbert Weinstock for many productive

discussions on the work in progress and his careful review and comments

on this report.
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EXECUTIVE SUMMARY

The dynamic stability and curve negotiation capability of rail transit

vehicles have a strong influence on their operational performance and

maintenance requirements. In this study computer simulation models have

been developed to analyze the stability and curving performance of transit

vehicles with conventional, radial and forced-steered trucks. In the

initial phases of the study, a nonlinear steady-state curving model useful

for evaluating the influence of different truck configurations and wheel

profile geometries on steady-state wheel-rail interaction forces and wear

indici was developed as well as a linear stability analysis for determining

vehicle critical speeds. These analytical tools were used to generate

extensive parametric data characterizing the steady-state curving stability

*
performance tradeoffs offered by various truck and wheel profile designs.

In this report, the steady-state curving analysis has been extended to

develop a dynamic curving model for computing the time varying wheel-rail

interaction forces and vehicle suspension and body forces and motions during

curve entry and exit as well as due to changes in track geometry. The

dynamic curving model includes nonlinear wheel/rail geometry, including

multipoint wheel- rail contact, nonlinear vehicle suspension elements, and

rail lateral flexibility.

Dynamic simulations of curve entry have been performed which have

shown the influence of wheel profile and suspension design for conventional,

self-steered and forced steered trucks on dynamic curving forces. In the

parametric dynamic curving studies, a smooth 150 ft spiral entry to a 10°

curve was considered with a vehicle operating at balance speed. In these

*
Wormley, D. N., Hedrick, J. K., Nagurka, M. L., "Stability and Curving
Performance of Conventional and Advanced Rail Transit Vehicles,"
DTRS-57-80C-00152

, November, 1982.
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simualtions the peak dynamic forces for the baseline conventional, self-

steered radial and forced steered radial vehicles were found to be a

maximum of 35% greater than the equivalent steady-state curving forces for

the baseline vehicle designs. For conditions in which the spiral length

is reduced to 50 ft, the conventional baseline design dynamic to steady-

state force ratio increased to a factor of 1.8. Also for the conventional

truck baseline design the ratio of dynamic to steady-state forces increased

to 3.8 for the 150 ft spiral entry as curve radius increased to a 2.5°

curve, however, the overall steady-state force levels for the 2.5° curve

are less than one third of those for the 10° curve and overall the maximum

dynamic and steady-state force magnitudes occur for the small radius curves.

Data comparing truck designs negotiating a 150 ft transition spiral

to a 10° curve have shown that significant decreases in both steady-state

and peak dynamic forces may be achieved using forced steered trucks with

Heumann wheel profiles. For the three baseline truck designs, both peak

dynamic forces and steady-state forces are smaller with a Heumann than

with a new AAR wheel profile with small reductions in peak forces of 5-6%

for the baseline conventional and self-steered radial designs and a

significant 58% reduction in peak forces for the forced-steered baseline

design. The peak dynamic curving forces for baseline trucks with Heumann

wheels are 4950 lbs for the conventional, 4800 lbs for the self-steered

radial and 1820 lbs for the forced steered baseline trucks. The forced

steered truck has peak forces 35% greater than the steady-state forces

while the conventional and radial have peak forces 22% above steady-state

forces. Thus, while the forced steered truck has a higher ratio of

dynamic to steady-state curving forces than the other two baseline designs,

its maximum dynamic force is less than one half the force in the other two

xv



baseline designs. These simulation results have been limited to an

evaluation of performance on smooth track with a 150 ft spiral transition

into a constant radius curve.

Limited experimental data is available on dynamic curving forces.

Field test data obtained on the Washington Metropolitan Area Transit

Authority for a rapid transit vehicle with a conventional truck have been

reviewed. The data for a truck employing new AAR wheels negotiating a

150 ft transition spiral into a 7.5° constant radius curve indicate

dynamic to steady-state forces in ratios of two to one occurring in the

constant radius section of the curve. The model simulation studies

conducted representative of these field conditions have only achieved such

force ratios for cases in which the vehicle undergoes significant transient

motions from an initial state displaced significantly from the steady-state

conditions. Such a state could occur due to local track conditions.

Further effort is required to resolve the differences between field data

and the analysis. Future effort is recommended with a coupled analytical

and experimental study of dynamic curving to develop an experimentally

verified dynamic curving model.
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NOMENCLATURE

a

S_a
a

half of track gage

acceleration of point a in reference system S

a
e

b

longitudinal semi-axis of contact patch ellipse

half of wheelbase

b
e

lateral semi-axis of contact patch ellipse

c
0

c
px

c
py

c
pz

c
r

c
sy

C
sz

S/ct
d
P

secondary yaw viscous damping

primary longitudinal damping

primary lateral damping

primary vertical damping

effective lateral rail viscous damping

secondary lateral damping

secondary vertical damping

coordinate transformation matrix from a to 3

half of lateral spacing between primary longitudinal
springs

d
s

half of lateral spacing between secondary vertical
springs

D

f*.

f
ll

f
12

f
22

f33
F
axle

F
buff

F
c

degree curve

nominal creep coefficients (ij = 11, 12, 22, 33)

lateral creep coefficient

lateral/spin creep coefficient

spin creep coefficient

longitudinal creep coefficient

vector of wheelset axle forces

lateral buff load

creep force vector (with components F
cPX » f

cpy»
3X1^ M

cp

in longitudinal, lateral, and normal contact patch
directions, respectively)

f
cpx

,f
cpy

creep force in longitudinal, lateral contact patch
direction

F * F

»

CPX’ CPY
unlimited creep force in longitudinal, lateral contact
patch direction

F
CXi

longitudinal track component of creep force at i-th contact
patch; i = L (left), R (right) for single-point; i = LT
(left tread) , LF (left flange) , R (right) for two-point
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V*
'N

F
NYi

NZi

rail.

F
k

SUSP

8

8

G

G

h

>

pr£

cs

lateral flange force (i.e., leading outer wheel lateral force)

wheelset lateral force (in lateral track direction) provided
by suspension and body forces

normal force

nominal normal force

normal force at i-th contact patch; i = L (left), R (right)

for single-point; i = LT (left tread), LF (left flange),

R (right) for two-point

lateral track component of normal force at i-th contact
patch; i = L (left), R (right) for single-point, i = LT

(left tread) , LF (left flange) , R (right) for two-point

vertical track component of normal force at i-th contact
patch; i = L (left), R (right) for single-point; i = LT
(left tread)

, LF (left flange) , R (right) for two-point

’ Frall
R

lateral rail reaction force at left,

unlimited resultant creep force

right rail
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1.0 INTRODUCTION

1 . 1 Background

The service provided in an urban rail transportation system and the

associated operating costs are strongly influenced by maintenance require-

ments of rolling stock and track. Components including wheels, axles,

suspension elements and power and braking equipment, as well as rails,

switching gear, ties and ballast sustain wear and experience forces

directly related to wheel/rail interaction forces. The control and

limitation of these forces can have a significant impact upon urban rail

transit system maintenance requirements. These forces are associated

directly with vehicle stability or hunting, vehicle curve negotiation

capability and vehicle vertical and lateral suspension capability to

accommodate track irregularities.

In the last decade an increasing interest in developing vehicles which

control these interaction forces to reduce wheel and rail and vehicle

and track deterioration has developed and led to proposals for:

(1) Conventional suspension trucks employing rubber or mechanical
components between the axle and truck frame which have reduced
stiffness

.

(2) Self-steering radial trucks which employ direct links between
truck axles to aid in aligning the axles radially in curves.

(3) Forced steering trucks which employ direct links between
carbody-truck-axle elements to force the axles into radial
alignment on curves.

In addition, proposals for use of profiled wheels to reduce curving

forces have been made. These developments have been motivated primarily

by the desire to reduce wheel and rail wear associated with curve

negotiation while maintaining adequate dynamic stability to avoid hunting

and adequate suspension capability to accommodate forces developed due to
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rail irregularities.

The evaluation of various types of conventional, self-steering radial

and forced steering trucks represents a tradeoff between a potential for

performance improvement and increased truck complexity. The selection of

an appropriate type of truck and wheel profile for a specific urban system

depends strongly on the system route characteristics - particularly, the

prevalence and distribution of small radius curves. For example in systems

with few small radius curves , conventional truck suspensions may provide a

good compromise between performance and truck design complexity, while for

older systems with many small radius curves, self-steering or forced-

steering trucks may prove to provide the best overall performance. To

facilitate the evaluation of truck design by urban rail operating

authorities, analytical evaluation methods, design data and field test

data are required. This study is directed to providing analytical models,

performance data and evaluation methods for conventional and advanced

urban rail truck designs.

A principal objective of this study is to develop performance data

for evaluating the stability and curving performance of conventional,

self steering radial and forced steering trucks designed for urban rail

systems. The analytical basis for the. study has been provided by

developing a generic truck model which directly reduces to conventional,

self-steering radial and forced steering truck designs.

In an effort described in an interim report [1], the model has been

incorporated into a linear stability program which allows computation

of the truck critical speed at which sustained hunting occurs and computa-

tion of the damping ratios associated with truck modes of oscillation.

The model has also been incorporated into a nonlinear steady-state
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curving program which computes wheelset, truck and carbody angles of

attack and wheel/rail as well as suspension forces for negotiation of a

constant radius curve at constant speed with a given superelevation. An

indication of wheel/rail wear has been computed based upon the work

performed at the wheel/rail interface.

An extensive parametric study has been conducted to determine the

influence of suspension and wheel profile design parameters on stability

and steady-state curving performance of conventional, self-steering

radial and forced steering truck designs. These performance studies,

which have provided tradeoff data necessary to identify truck designs

for a given critical speed which result in reduced wear for a given

radius curve based on steady-state analysis, are described in the interim

report [ 1 ]

.

1.2 Study Scope and Objectives

The current study is directed to extending the steady-state analytical

model of curving performance to include dynamic effects which may occur

during curve entry and exit or due to track irregularities and misalign-

ment. Specific effort is directed to development of a dynamic curving

computer simulation model which can predict the transient forces resulting

from wheel-rail interactions. The simulation is based upon the generalized

rail vehicle model that represents conventional and innovative suspension

designs, including self-steered and forced-steered vehicles and includes

nonlinear wheel/rail profile geometry, wheel/rail friction force

saturation, and nonlinear suspension components. The analysis considers

two-point wheel/rail contact which occurs with many common wheel profiles

during curving.
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A limited set of parametric studies have been conducted in the study

to evaluate the influence of track configuration and wheel profile on

dynamic curving performance. Of particular concern in this study is the

degree to which dynamic curving force magnitudes are different from

steady-state curving forces.

The study has included a limited comparison of the dynamic curving

model results with experimental data. The scope of this comparison did

not permit a detailed assessment of the model and additional effort is

required in this area to develop an experimentally validated dynamic

curving model.

1.3 Previous Curving Studies

The majority of wheel-rail geometry representations in curving studies

in the literature have assumed that each wheel of the vehicle contacts

the rails at a single point. This is an acceptable approximation of tread

contact, but for some profiles this represents a simplistic view of flange

contact. Two-point tread and flange contact can occur for profiles with

steep flanges, such as the new AAR 1 in 20 wheel profile. The vehicle

curving studies of Marcotte, et . al. [2] considered two-point wheel/rail

contact by using a wheel profile composed of a tread and flange segment

of constant (but different) conicity. Using experimental data, Elkins

and Weinstock [ 3 ] showed that significant errors result in predicting

curving behavior based on analyses assuming single-point wheel/rail contact

when in fact two-point contact occurs. Thus, formulation of a model which

can represent many wheel profiles, requires consideration of the multi-

point contact geometry.
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An early investigator of dyanmic curving was Mueller [4] who used the

friction center method to study the performance of a rail truck during

transition from tangent to curved track. The friction center method assumes

that the wheel profiles are cylindrical, the primary suspension elements

are rigid, and that one or more wheels are in flange contact. Meuller

predicted that the magnitude of the impact force on the flange can become

significant in comparison to the steady-state curving force.

During the last few years nonlinear dynamic analyses have been

developed, relying heavily on large scale computer systems. Smith [ 5]

formulated a dynamic curving analysis which considers nonlinear suspension,

damping, and creep forces. The analysis is limited in that it assumes

conical wheels and a carbody which does not yaw with respect to the local

tangent to the track centerline. The study does not consider track super-

elevation (banking), irregularities, or flexibility. Smith showed that as

the length of spiral transition track (between tangent and constant radius

track) decreased the forces during curve entry increased.

Law and Cooperrider [ 6,7] have developed comprehensive steady-

state and dynamic curving models that include nonlinear suspension

elements, creep forces, and wheel/rail geometry but do not directly

account for rail flexibility. System inputs are track curvature, super-

elevation angle, and irregularities. Results of their models indicate

that dynamic wheel/rail forces are large compared with steady-state forces

in large radius curves, at balance speed (corresponding to zero lateral

unbalance) , and in situations where flange contact is not severe. A

reduction in dynamic flange forces is demonstrated using self-steered

radial trucks.
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Clark, et al, [8] introduced a nonlinear dynamic curving analysis

that predicts the transient response of two-axle vehicles. The analysis

accounts for lateral truck flexibility and irregularities. Predictions

made for a vehicle traversing a section of misaligned track agreed well

with an experimental derailment.

Duffek and Jaschinski [ 9 ] formulated a detailed model of wheel/rail

interaction to be used for dynamic curving studies. The model includes

nonlinar creep force laws and accounts for the influence of wheelset

yaw angle on wheel/rail contact geometry. Single-point wheel/rail

contact is assumed.

Krolewski [10] developed a model for freight car dynamic curving

simulations that includes nonlinear wheel/rail geometry, coulomb friction

elements, and creep force saturation. With the model, dynamic wheel/rail

forces exceeding steady-state values have been predicted.

The dynamic curving studies cited above do not account for the

two-point wheel/rail contact.
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2 . 0 STUDY METHODOLOGY

2 . 1 Introduction

This chapter describes the establishment of dynamic performance

criteria, the formulation of track and vehicle models, and the development

of computational tools. The wheel/rail contact work due to friction

which is related to wheel and rail wear [ 1 1 ] is adopted as the principal

curving performance index. The stability index is the maximum speed for

stable operation, the critical speed.

A model of the track is adopted in which the track curvature and

bank angle are assumed to be known functions of the distance along the

track. In addition, the rails are assumed to have lateral flexibility.

A model of the wheelset is developed that accounts for nonlinear

wheel/rail profile geometry and friction force saturation. The profile

geometry is a principal parameter influencing the performance of the

vehicle

.

The nonlinear wheelset model is incorporated into a vehicle model

which includes nonlinear suspension components and a generic truck model

that can represent conventional as well as advanced design suspension

configurations

.

The performance of the rail vehicle is investigated using a dynamic

curving analysis. In this analysis, the coupled, nonlinear, differential

equations of motion are solved numerically using a fourth order Runge-

Kutta integration scheme.

Baseline rail and vehicle parameters are used in the performance

studies. The vehicle parameters have been selected to represent conven-

tional and advanced-design urban transit vehicles. Two wheel profiles
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have been identified to represent profiles characterized by single-point

and two-point wheel/rail contact.

2 . 2 Performance Criteria

The curve negotiation and stability capabilities of a rail vehicle

are measured in terms of performance criteria or indices.

2.2.1 Curve Negotiation

Several criteria have been developed to represent the curving

performance of a rail vehicle. During curve negotiation, different

performance objectives can be identified, including perfect steering,

prevention of derailment, minimum wheel/rail forces, and minimum wheel/

rail wear as described in [ 1 ]

.

A wear index which represents the work expended at the wheel/ rail

contact interface has been recommended by British Rail { 11] . The index

is the contact patch work, W, defined as the dot product of the resultant

creep force and creepage vectors. When summed over all contact patches,

this index represents the additional work per distance along the track

required for the vehicle to negotiate the curve. This index has units of

work per distance, or force.

Comprehensive verification of wear indices has been limited. Tests

by British Rail [11] and I.I.T. [12] have shown potentially useful trends,

including a positive relation between contact patch work (W) and

experimentally- induced wear. Dry wear laboratory tests by British Rail

[13] have suggested that the wear rate can be expressed in terms of

creep force, creepage, and Hertzian contact area. Recent field data

described in [14] has provided additional data indicating the usefulness

of the contact patch work as an indicator of wear.
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In this report the contact patch work, W, has been selected as

the principal index of curving performance. The contact patch work is

a comprehensive measure of the work expended (i.e., energy dissipated)

due to friction at the wheel/rail interface. The work index includes the

effect of wheel/rail creepage and, in particular, wheelset angle of attack.

Experience shows that the flanging wheel is responsible for the

majority of wheel and track wear [14], For a vehicle negotiating a curve,

flanging usually occurs at the leading outer wheel. Significant wear

occurs on the wheel flange and on the gage face of the outer rail.

Therefore, the principal curving performance index used in this report

is the contact work at the flanging wheel.

2.2.2 Lateral Stability

A useful index of vehicle stability is the critical speed. At the

critical speed, the vehicle exhibits sustained oscillatory behavior called

hunting, involving coupled lateral and yaw motions of the wheelsets, truck

frames, and carbody. In general, the wheelset oscillations tend to diverge

until they are limited by the wheel flanges. To avoid this behavior, a

vehicle should be designed to achieve a critical speed significantly

greater than the operating speed.

2 . 3 Track Model

The track is characterized by its curvature, superelevation, and

irregularities. The track curvature is defined as 1/R, where R is the

curve radius. It is often expressed in terms of degree curve, D,

corresponding to the degrees of arc subtended by a 100 ft chord at the

track centerline. Mathematically,

D
360

7T
( 2- 1 )
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with R in ft. The track superelevation or bank angle, (j> , is the angle
SE

between the track and the horizon. It is usually expressed in degrees.

Degree curve and superelevation are shown in Figure 2.1.

It is convenient to combine the track curvature, the superelevation

angle, and the vehicle forward speed, V, into a parameter of net lateral

unbalance called the cant deficiency, <f>^ . Cant deficiency is defined by:

4>

v-
- *Rg ySE

( 2- 2 )

and represents an angular measure of lateral unbalance between centrifugal

and gravitational forces. When (f)^
= 0, a condition of balanced running

is achieved for which the components of centrifugal force and weight

parallel to the rail plane cancel each other. For comfort and safety,

the cant deficiency is limited in the U. S. to 6° of inboard unbalance

and 3° of outboard unbalance [ 1 ]

.

Track irregularities are due to a combination of installation error

and gradual degradation. In the literature, four types of irregularities

are defined: gage, cross-level, alignment, and vertical. Gage is the

horizontal distance between two rails; cross-level is the difference

between the elevations of the rails, alignment is the average of two rail

lateral positions; and, vertical is the average of the two rail elevations.

In this study track irregularities are neglected and the track is

assumed to be smooth. Implementation of cross-level and alignment

irregularities is possible by the addition of a random disturbance to the

superelevation angle and the rail lateral excursion, respectively.

In this study a simple model of track curve geometry is adopted [ 1 ].

In tangent track, the track curvature and superelevation angle are zero.

In constant radius curve track, the curvature and superelevation angle are
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constants (and maximum). In transition spiral sections, the track

curvature and superelevation angle vary quadratically , as shown in

Figure 2.2. The track curvature and superelevation angle of a spiral

section are approximated by second order polynomial functions fitted

between tangent and constant radius curve track sections.

2.3.1 Flexible Rail Model

A flexible track model is adopted in which each rail is assumed to

have lateral freedom only and rail rollover or overturning motion is

*
neglected. The mass-spring-damper model of the rail is shown in

Figure 2.3. The rail is assumed to have effective lateral mass, viscous

damping, and linear stiffness, m^, c^, and k^, respectively. The rail

lateral displacement, y is related to the net lateral wheel force

by the rail equation of motion presented in Appendix A.

Typical values of effective lateral stiffness are 1.0 x 10"* lb/ft

for soft rail and 1.0 x 10 ^ lb/ft for stiff rail [15]. A representative

4
value of effective lateral damping is 1.0 x 10 lb-sec/ft. In the

curving performance studies, the effect of lateral mass, m^, is neglected

2 . 4 Wheelset Model

The wheelset represents the basic element of the rail vehicle

steering and support system. Each wheelset consists of two steel wheels

rigidly mounted to a solid axle. A typical wheelset cross-section is

shown in Figure 2.4. Each wheel profile has a steep taper section at the

inner edge known as the flange and a shallow taper (or sometimes

cylindrical) section from the flange to the outer edge known as the tread

If rail rollover occurs, the wheel/rail profile data which assumes

fixed gage must be modified. The implications of gage changes due

to rail flexibility are discussed in Section 2.4.2.
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REAR
VIEW:

Figure 2.3 Lateral Track Model
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REAR VIEW:

Left Contact Flange

Figure 2.4 Typical Wheelset Cross-Section
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A variety of wheel profile shapes are used by the transit industry.

A model has been developed to characterize wheelset dynamic curving

behavior. The model accounts for nonlinear wheel/rail profile geometry

and contact forces, and represents single-point and two-point contact at

the flanging wheel.

2.4.1 Coordinate Systems

A free wheelset negotiating smooth, curved track is exposed to track

curvature and inertial force inputs, including cant deficiency. The

inertial force inputs are due to dynamic effects, and are discussed in

detail in Appendix A.

Assuming continuous wheel/rail contact, a wheelset negotiating

curved track at constant speed is described by 5 states: lateral

• •

displacement, yTT , and velocity, y ; yaw angle, ipTT , and rate, ik
T ; and

W WWW
spin speed, 0 . For a wheelset traversing right-handed curved track,

w

positive lateral displacements, y , are associated with excursions toward

the left rail (i.e., the outer or high rail). Thus, as the wheelset

displaces laterally in the positive sense, flange contact occurs at the

left wheel. In general, the spin speed, 0 , differs from the pure rolling
w

angular speed due to slippage (i.e., creepage) at the wheels.

Wheelset (W) and track (T) coordinate systems are introduced in

Figure 2.5. The relation between the wheelset and track coordinate

systems is
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Figure !.5 Track and Wheelset Coordinate Systems

2-11



where small yaw (lb) and roll (<J) ) angles are assumed and pitch (0 )w w w

is neglected. Coordinate system transformation relations are derived

in Appendix A (Section A. 2).

2.4.2 Wheel/Rail Geometric Constraints

The following wheel/rail contact geometry parameters are defined:

<5

L
,

6
r

left, right contact angle; i.e., angle of contact
patch plane with respect to wheelset spin axis

r , r
R

left, right rolling radius, i.e., radial distance
from wheelset spin axis to contact "point"

<J>^ wheelset roll angle relative to track plane.

The contact angles, rolling radii, and wheelset roll angle are shown

in Figure 2.4 for a wheelset in single-point contact at the left and

right wheels.

For a wheelset which never loses contact with the rails, the rolling

radii, contact angles, and wheelset roll angle are functions of the net

wheelset-rail lateral excursion for a given wheel/rail profile. These

functions are shown in Figures 2.6a, 2.7a, and 2.8a for a Heumann wheel

on worn rail profile and in Figures 2.6b, 2.7b, and 2.8b for a new AAR 1

in 20 wheel on worn rail [ 1]. The data for both profiles assume standard

gage rails. In this report the new AAR wheel profile is referred to as

"new wheel". For the new wheel profile, the flange clearance is 0.32 in.

The rolling radii, contact angles, and roll angle are wheel/rail

geometric constraint variables since they are functions of the net wheel-

set rail lateral displacement. If the rolling radii and contact angles

are single-valued functions of the lateral excursion, single-point contact

occurs at both wheels for all displacements. Continuous single-point

contact occurs for the Heumann wheel profile. As the wheelset displaces

laterally, the outer wheel shifts smoothly from tread to flange contact,
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(a)

(b)

Figure 2.7 Contact Angles vs. Net Wheelset Lateral

Excursion for (a) Heumann Wheel and

(b) New Wheel on Worn Rails
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while the inner wheel maintains tread contact. For other profiles with

steep flanges, such as the new wheel profile, the outer wheel rolling

radius and contact angle functions have discontinuous jumps at net

lateral excursions equal to the flange clearance. The discontinuous

jumps indicate that multiple points of contact can develop at the flanging

wheel. As before, single-point tread contact occurs at both the inner

and outer wheels for a net wheelset excursion less than the flange

clearance. Two-point contact occurs at the flanging wheel and single-

point contact occurs at the inner wheel for a wheelset excursion (relative

to the flanging wheel rail) equal to the flange clearance. Single-point

flange contact occurs at the flanging wheel for net excursions greater

than the flange clearance.

For a wheelset negotiating right-handed curved track, the left wheel

represents the outer or flanging wheel. Figure 2.9 shows the contact

condition at the left wheel as the wheelset displaces laterally. Single-

point tread contact (Figure 2.9a) and single-point flange contact

(Figure 2.9c) occur for net excursions less than and greater than the

flange clearance, respectively. Two-point contact occurs for a wheelset

excursion (with respect to the left rail) equal to the flange clearance.

Two-point contact is depicted in Figure 2.9b where the rail head is shown

to contact simultaneously both the tread and flange of the left wheel.

*
For a wheelset in two-point contact, the displacement relative

to the left rail is fixed at the flange clearance. Mathematically,

The terminology assumes that the two points of contact occur at the

flanging wheel. "A wheelset in two-point contact" actually has three

points of wheel/rail contact, two at the flanging or outer wheel and

one at the inner wheel.
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(2-4)yw yrail
L

7fc

where y and y are the lateral displacements of the wheelset and
W IT3.1 Lj

left rail, respectively, and y is the flange clearance. Equation (2-4)

represents a constraint relation between the wheelset and left rail

lateral excursions for two-point contact. The constraint relation

determines the contact geometry of the tread and flange contact points

at the left wheel.

The contact geometry (rolling radius, contact angle) at each wheel

is specified by the net lateral excursion according to the geometric

constraint functions shown in Figures 2.6 and 2.7. These profile functions

apply for a fixed standard rail gage. Due to rail flexibility, the actual

gage is not constant. The gage, g’, is given by

2a +
yrall

R
(2-5)

and differs only slightly from 2a. Since gage changes occur, use of the

fixed-gage wheel/rail profile data represents an approximation. In this

work, it is assumed that (1) the flanging wheel contact geometry is

correct, and (2) the nonflanging wheel contact geometry is in error but

the error is small since the tread contact geometry is relatively

constant

.

In addition to rail flexibility, rail rollover alters the wheel/rail

profile data. The effect of rail rollover which changes the rail cant

angle, is not addressed.

In summary, some wheel/rail profiles, notably many European profiles

including the Heumann wheel profile achieve single-point contact at all

realistic displacements. Many new wheel profiles, including the standard
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AAR 1 in 20 profile used commonly in the U. S. contact the rails at

multiple points during normal use.

2.4.3 Wheel/Rail Contact Forces

For a wheelset negotiating a curve, slip or creepage may develop at

the rails. Normal loads acting on the slipping wheelset result in the

generation of friction-type forces known as creep forces. In general,

the wheel/rail contact forces are separated into normal forces acting

perpendicular to the contact plane and creep forces acting in the plane.

Each point of wheel/rail contact is a "patch" of finite area. At

each patch, a state between pure-roll and pure-slip exists. During the

last ten years there has been a significant improvement in the under-

standing of the friction mechanism which develops at the contact patch.

Kalker [16] has developed linear, simplified nonlinear, and exact non-

linear theories and computational programs to predict contact patch creep

forces. In this report a heuristic nonlinear creep force model is used

which is computationally fast and reasonably accurate. This model predicts

a resultant creep force which agrees with linear Kalker theory for small

creepages and which saturates at the adhesion limit for larger creepages,

as shown in Figure 2.10. In Appendix A, the creep force model is

described in detail and expressions for the creepages are dervied.

2 . 5 Truck Model

This section describes models of conventional and innovative truck

configurations. All of the physical configurations discussed in

Section 2.5.1 through 2.5.3 represent special cases of the generic model

presented in section 2.5.4.
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2.5.1 Conventional Truck

In a conventional truck, the wheelsets are connected to the truck

frame by primary suspension elements. Typically, the primary suspension

elements consist of coiled springs, rubber chevrons or rubber bushings

between the bearing adapter and the truck frame. A conventional truck

is shown schematically in Figure 2.11. The following notation is used:

k^ is the primary longitudinal stiffness, k is the primary lateral

stiffness, 2d^ is the distance between the longitudinal springs, and 2b

is the truck wheelbase.

2.5.2 Self-Steered Radial Truck

A self-steered radial truck is a conventional truck with an

additional direct connection between the two wheelsets by means of

passive springs or structural members in shear and bending. A schematic

representation of a self-steered truck is shown in Figure 2.12.

A self-steered truck has two additional stiffness parameters which

connect the two wheelsets directly. These are defined as the direct

interaxle bending stiffness, k^* an<* direct interaxle shear stiffness,

k^* The stiffnesses k^ an<^ are sufficient to model any direct

elastic connection between the two wheelsets. Most often this connection

takes the form of steering arms [17], cross-braces [18], or similar

linkages as shown in Figure 2.13.

The term self-steered radial truck describes the steering action

produced by direct interwheelset connections when the stiffness k^ is

low. With soft a ^aw mot T°n of one wheelset causes the other wheelset

to yaw in the opposite direction helping to align the wheelsets radially

in a curve. The self-steered radial design has two essential differences
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Figure 2.12 Schematic of Self-
Steering Radial Truck
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(b).

Steering Arm

Figure 2.13 Alternative Self-Steering Radial Truck Configurations
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from the conventional design. First, forces are transmitted directly

between the wheelsets, and second, the total truck shear stiffness is

not limited as it is in the conventional design. The first property allows

for a more stable design since the truck frame can become dynamically

decoupled from hunting wheelsets [ 19] . The second property helps the

truck reduce wheelset angles of attack during curve negotiation after

flanging has occurred.

2.5.3 Forced-Steered Radial Truck

A forced-steered truck utilizes linkages between the carbody and the

truck frame to force the wheelsets into near radial alignment when

traversing curves. In particular, the yaw angle that develops between the

carbody and the truck is related to the curve radius, and linkages between

the carbody and the wheelsets can be used to force the wheelsets into a

more radial alignment. Similarly, the lateral displacement between the

carbody and truck is related to the cant deficiency, and linkages can be

designed to produce forces on the wheelsets as a function of the cant

deficiency. Thus, a forced-steered radial truck is a self-steered radial

truck with additional linkages which impose forces on the wheelsets as a

function of the .relative yaw and lateral displacements between the carbody

*
and truck.

Several forced-steered truck configurations have been proposed with

different linkage arrangements. The schematics of three configurations

*
Typically, the forced-steering linkages are connected to the bolsters,
rather than the carbody directly. However, since the bolsters are

stiffly connected to the carbody, they essentially execute the same

motions. Thus, in this discussion, the forced-steering linkages are

assumed to be connected to the carbody. This differs from the development

in Appendix B, which assumes that the linkages are connected to the

bolster (in yaw)

.
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that have forced steering action are shown in Figures 2.14, 2.15 and

2.16. In this study they are designated the S, L, and U trucks because

configurationally they are similar to the Scales [20], List [17], and

k
UTDC [21] designs, respectively.

The bending and shear stiffnesses due to forced-steering linkages

are equivalent to "effective" truck interaxle bending and shear stiff-

nesses, respectively. Typically, the L truck has high effective interaxle

shear stiffness and the U truck has zero interaxle shear stiffness. The

S truck has properties similar to the three piece freight truck because

of its high interaxle bending stiffness and relatively low interaxle shear

stiffness. For each prototype, expressions for the effective stiffnesses

and the steering gains in terms of linkage stiffness and dimensions are

included in Figures 2.14, 2.15 and 2.16 with detailed derivations [ 1 ].

The actuation of the forced-steering linkages for the forced steered

trucks can be represented by a geometric offset in series with a linkage

bending and/or shear stiffness. The lateral and yaw offsets. Ay and Aip,

as well as the linkage stiffnesses, k
g ^

a^d k^* are s^ own an Figure 2.17.

The curving performance of a forced-steered truck is a function of

the steering gain G which is determined by the dimensions of the forced-

steering linkages. The gain can be set by appropriate .selection of

linkage dimensions such that kinematically (i.e., with the assumption

of rigid steering linkages and no flange forces) the wheelsets track the

**
pure rolling line, the track centerline or any line parallel to the

track centerline. Theoretically, the gain which makes the wheelsets track

Urban Transportation Development Corporation Ltd., Ontario, Canada

The lateral displacement that produces pure kinematic rolling of a

single wheelset.
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Figure 2.17 Forced-Steering Truck Model
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the pure rolling line ensures perfect radial alignment (i.e., neutral

steering) of the wheelsets.

In general, the pure rolling line gain is appropriate before flange

contact occurs since it correctly aligns the wheelsets radially. However,

after flange contact occurs the assumptions implicity in the derivation of

the pure rolling line gain are violated and as a result G
^
may not align

the wheelsets appropriately. Other gains may have relative advantages.

The pure rolling line gain is typically used in practice in prototype

vehicles [22]

.

2.5.4 Generic Truck Model

A generic truck model that represents the different forced-s teered

truck prototypes as well as the conventional and self-steered radial trucks

is shown in Figure 2.18. The generic truck model represents the suspension

system of the conventional truck consisting of bearing connections between

the wheelsets and truck frame. These primary suspension elements are

modelled as parallel combinations of linear springs and viscous dampers

between the wheelsets and truck frame in the longitudinal and lateral

directions. In addition, the generic truck model includes the effect of

steering linkages between the wheelsets, trucks, and carbody to represent

a variety of forced-steered truck designs. The steering linkages of self

and forced-steered trucks are also modelled as parallel linear spring/

viscous damper combinations.

The generic truck model is reduced to particular truck configurations

by appropriate assignment of stiffnesses and steering gain values [ 1 ]

.

The forced-steered truck studies in this report are based primarily on

the L design. The L design has the inherent features of forced-steered

trucks making it suitable for parametric study.
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(Important design parameters for forced-steered trucks include shear

and bending stiffnesses and the steering gains.) In addition, the

L truck was selected as one which has potential application to transit

systems. Relative performance, design, and manufacturing benefits

of specific forced-steered truck configurations are not addressed in

this report.

2.6 Vehicle Model

A rail passenger vehicle consists of a carbody supported by four

wheelsets, two truck frames, and two bolsters. The wheelsets are

connected to the truck frame and is attached to the carbody via secondary

suspension elements.

As a rail vehicle negotiates a curve, internal and external forces

and moments act on the wheelsets, trucks, bolsters, and carbody. The

internal forces and moments are due to the suspension components. The

external forces and moments are due to (1) inertial forces, including

weight and cant deficiency forces, (2) wheel/rail contact forces, and

(3) drawbar or buff loads.

This section presents the rail vehicle model, shown schematically

in Figures 2.19 and 2.20. The vehicle model incorporates the generic

truck model described in the previous section. The dynamic curving

equations of motion of the rail vehicle are developed in Appendix B.

2.6.1 Carbody /Bolster Model

The bolster is a structural member which rests on the truck and

carries the load of the carbody from the secondary springs to the center-

plate of the truck frame. During curve negotiation, the truck frame

yaws relative to the bolster against the frictional resistance due to
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Figure 2.20 Rail Vehicle Model During Curving,

Rear View
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pads at the centerplate. The physical arrangement and the model of the

yaw suspension are shown in Figures 2.21 and 2.22 respectively. The

bolster is connected to the carbody by anchor rods which provide

torsional stiffness and damping. Typically, the torsional stiffness

is quite high (i.e., > 5.0 x 10^ ft-lb/rad).

The secondary suspension system acting between the truck, bolster,

and carbody is modelled as follows. The carbody is coupled to the

bolster via (1) parallel spring/viscous friction elements in the lateral

and vertical directions, as shown in Figure 2.22 and (2) a torsional

spring/viscous damper combination in the yaw direction. The bolster is

connected to the truck frame by a torsional coulomb damper which saturates

at a breakaway torque. For computational reasons, the model of the

coulomb damper is modified to include a linear viscous band at the origin,

as shown in Figure 2.23.

In the performance studies, it is assumed that the anchor rods are

rigid, i.e., k
g^

= 00
. Thus, each bolster follows the carbody motion in

yaw and the truck motion in the lateral direction.

2. 7 Numerical Methods of Dynamic Curving Analysis

A dynamic curving analysis has been developed to predict dynamic

behavior of the rail vehicle during curve negotiation. The behavior

is described by coupled, nonlinear, differential equations of motion,

which are developed in detail in Appendix B.

A total of 42 states (or 21 degrees of freedom) are used to

characterize the full vehicle model: 20 states for the 4 wheelsets

,

8 states for the 2 trucks, 6 states for the carbody, and 8 states for

the rails. Each wheelset has a degree of freedom (i.e., 2 states) to
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Carbody

Figure 2.22 Model of Secondary Yaw Suspension



Figure 2.23 Truck Frame/Bolster Yaw Suspension
Characteristic
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describe its lateral and yaw motions, as well as a state to describe

its spin speed. Each truck has a degree of freedom to describe its

lateral and yaw motions. The carbody is characterized by lateral, yaw,

and roll degrees of freedom. In addition, a simple model of the track

is adopted in which the rail at each wheel has a state to describe its

lateral motion.

In matrix notation, the dynamic curving equations of motion are

written as:
• • • •

[M] {x} + [C(X, X)] {x} + [K(X, X)] {X} = {B(X, X)} (2-6)

where [M] , [C] , and [K] are mass, damping and stiffness matrices, {b} is

a forcing function vector due to track curvature and cant deficiency,

and {X} is a displacement state vector. The damping and stiffness matrices

are functions of displacements and velocities due to nonlinear suspension

components

.

Equation (2-6) is a set of coupled, nonlinear differential equations.

The equations are solved by digital integration using a variable time-

step, fourth-order Runge-Kutta scheme, which requires that the equations

be in first-order form. The transformation is obtained by letting

{X} = {U> (2-7)

where {U} is a velocity state vector. Substituting into equation (2-6)

gives
• • • •

{u} = [M]
_1

({B(X, X)} - [K(X, X)] (X> - [C(X, X)] {u}) (2-8)

Equations (2-7) and (2-8) are numerically integrated to provide time

histories of (1) all the state variables, i.e., {x} and { u} , (2) the

wheel/rail contact forces, and (3) the contact patch work.
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The dynamic curving analysis is coded in a FORTRAN program, entitled

DYCURV (DYnamic CURVing) . A flowchart of the program appears in Appendix B.

The program automatically accounts for the possibility of two-point con-

tact at any wheel of the vehicle. Figure 2.24 shows the possible wheel/

rail contact conditions for the leading and trailing wheelsets of a truck

with new wheels. Two-point contact can develop at the outer or inner

wheels of any of the wheelsets, especially during violent curve entry

and exit, during negotiation of reverse curves, and during hunting.

Program DYCURV has been used to simulate the dynamic response of

the rail vehicle model as it enters and negotiates curved track. In

general, the program requires a small time-step of digital integration

(~ 0.0005 sec) for numerical stability, making it computationally

time-consuming.

2.8 Baseline Rail and Vehicle Parameters

The baseline prameters used in the rail and vehicle models are listed

in Table 2.1. They were selected to represent conventional and forced

steered urban transit vehicles.

Two wheel/rail profiles were used in the studies: a new AAR wheel

and a Heumann wheel both on worn rail of standard gage. Both profiles

were obtained from tables in [23], smoothed, and modified to account for

a centered rolling radius of 14.0 in. Geometric constraint functions

for these two symmetric profiles are described in Section 2.4.2. The

new AAR wheel represents a wheel with a 1/20 tread taper and a steep

flange. Single-point contact occurs in the tread region. However, due

to the steep flange of this profile, two-point tread and flange contact

occurs at wheelset lateral excursions equal to the flange clearance.
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TABLE 2.1 BASELINE RAIL/VEHICLE PARAMETERS

WHEEL/RAIL

*
f

f

f

f

f

f

f

f

X

11T

12T

22T

33T

11F

12F

22F

33F

[lb]

[ft-lb]

(ft
2
-lb]

[lb]

[lb]

[ft-lb]

[ft
2
-lb]

[lb]

y

New Wheel Heumann Wheel

**
1.09E6 1.01E6

8615. 9620.

82. 14.

1.18E6 9.805E6

7.34E5 5.755E5

6820. 4735.

2

.

1.

6.71E5 5.26E5

0.05 0.20

0.30 0.30

GEOMETRY

r
o

[ft] 1.167 h
ts

[ft] 1.48

a [ft] 2.32 SJ*

rt •W

[ft] 0.52

b [ft] 3.75 h
c

[ft] 2.375

d
P

[ft] 1.92 l
s

[ft] 23.75

h
cs

[ft] 2.90 d
s

[ft] 3.71

*
Creep coefficients are half-Kalker values with a nominal contact

patch normal load of 15,000 lb.

E represents to the power of 10, e.g., 1.0E6 = 1.0 x 10
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COMPONENT WEIGHTS AND MOMENTS OF INERTIA

Conventional Radial
WHEELSET Truck Trucks

»
w Hb] 4054. 4854.

Wy [slug-ft
2

] 28. 28.

X
WZ

Isiug-Et
2

]
547. 946.

TRUCK

W
p

[lb] 4697. 469 7.

I
FX

f slu§~ft2 ^ 1166. 1166.

I
pz

[slug-ft
2

] 1251. 1251.

CARBODY

W [lb] 70,190,

I
cx

[slug-ft
2

]
4.40E4

I
cz

[slug-ft
2

]
8.96E5

VEHICLE WEIGHT CONVENTIONAL RADIAL

W
y

[lb] 95,800 99 ,000
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BASELINE STIFFNESSES AND DAMPING

PRIMARY SUSPENSION

New Wheel Heumann Wheel

Conventional Radial Conventional Radial

k
px

[lb/ft] 1.35E5 1.20E5 6.50E5 5.00E5

C
px

[Ib-sec/f t

]

574. 756. 2760. 3150.

k
py

[lb/ft] 7.50E5 k [lb/ft] 1.0E6
pz

c
py

[lb-sec/ ft ] 620. C [Ib-sec/ft] 600.
pz

INTERWHEELSET STIFFNESSES

Conventional Radial

^2 [f t-lb/rad] 0.0 1.0E3

k „
s2

[lb/ft] 0.0 1.0E6

SECONDARY SUSPENSION

k
sy

[lb/ft] 19,500. k
sz

[lb/ft] 20,400.

C
sy

[lb-sec/ft] 1420. C
sz

[lb-sec/ft

]

1630.

C
o

[ft-lb-sec/ rad] 1.E7 T
"o

[ft-lb] 7500.

FORCED STEERING PARAMETERS

G „
= 0.1579 H = 0.0

prx.
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The Heumann wheel profile was designed with the intention of maintaining

single-point contact at all wheelset excursions to obtain a profile that

would maintain its shape as it wears [24]. The new and Heumann wheel

profiles are representative two-point contact and single-point contact

profiles, respectively.

Linear creep coefficients typical of the tread and flange of the two

wheel profiles were calculated using Hertzian contact theory. Rail and

wheel radii of curvature were obtained from [23]. Flange creep

*
coefficients are less than tread coefficients (by about 30 percent for

longitudinal and lateral coefficients) . This decrease in flange creep

coefficients is expected since the contact patch area decreases in the

flange, and its effect outweighs the opposite effect of increased

ellipticity

.

The vehicle dimensions and weights are representative of urban

transit trucks. Specifically, the geometry, weights and inertias are

**
based on those reported for the existing and modified PATCO Pioneer III

trucks described in [25], The weight and inertia parameters reflect the

fact that in yaw and roll the contribution of the traction motor must be

included. In addition, for radial trucks the contribution of the steering

arm is added. The weight and roll and pitch inertias of the truck

include the side frames, braking equipment, and bolster. The bolster

does not influence the truck yaw inertia.

The baseline primary, secondary, and interaxle suspension stiffnesses

_

The contact patch ellipse (a/b) ratio for the flange patch is limited

to 10. This agrees with calculations by British Rail which show that

the (a/b) ratio rarely exceeds 10 [ 26] .

**
Port Authority Transit Corporation
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3.0 DYNAMIC CURVING STUDIES

3 . 1 Introduct ion

The studies described in the Interim Report [ l] have focused on the

steady-state curving performance of rail vehicles. These studies have

indicated the value of optimizing suspension design and wheel/rail pro-

file to minimize wheelset angles and wheel/rail forces and thus reduce

wheel and track wear. However, dynamic effects occur at track curve entry

and exit sections and due to track irregularities. These dynamic effects

resulting from prescribed changes in track curvature and banking are

evaluated parametrically in this study.

In the curve entry simulations, the following assumptions are made:

(1) The vehicles enter the transition spiral track at the initial time

(t - 0.0 sec) from centered tangent track positions. (2) The vehicles

operate at constant forward speed, determined by the balanced running

speed for the constant radius curve track. (Table 3.1 lists the balance

running speeds for different track curvatures used in the simulations. )

(3) The baseline transition spiral is 150 ft, which represents a typical

value for transit systems. (4) Laterally stiff rails are used, i.e. ,

k ^ = 1.0 x 10
7

lb/ft. (5) The wheelsets are powered with axle drive

torques of 420 ft-lb, representing 5% of the slip torque for axles with

50 HP traction motors operating at 50 mph.

In the dynamic curving analysis, the following model of secondary

yaw suspension is adopted. A coulomb damper which saturates at the

breakaway torque acts between each truck and the carbody. For numerical

convenience, the damper is represented with a linear viscous band at the

origin. During dynamic conditions, the front and rear trucks display
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TABLE 3.1

BALANCED RUNNING SPEEDS
ASSUMING 6 IN SUPERELEVATION

(i.e., «> = 6.2°)

DEGREE
CURVE
(deg)

CURVE
RADIUS
(ft)

BALANCED
RUNNING
SPEED

(ft/sec) (mph)

2.5° 2290 90 60

5° 1146 60 45

10° 575 45 30

o
O(N 288 30 20
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different behavior in general since truck and carbody yaw rates are

present and thus yaw torques develop. Due to the linear viscous band,

in steady-state the secondary yaw torques on the two trucks vanish since

the truck and carbody yaw rates are zero. Thus, in the dynamic curving

analysis, the two trucks behave identically in steady-state since no

secondary yaw torques are imposed.

3. 2 Curve Entry Performance of a Conventional Vehicle

The effect of track curvature, wheel/rail profile, and transition

spiral length on the transient behavior of baseline conventional

vehicles has been determined.

Typical entry dynamics are shown in the response of a baseline

conventional vehicle with new wheels (for which k = 1.35 x 10“* lb/ft)
px

negotiating a 150 ft transition spiral into a 10° curve at a balance

speed of 45 ft/sec. Figures 3.1a and b show the wheelset lateral

excursions and angles of attack, respectively, as functions of time.

Figures 3.2a and b show the leading outer (i.e., flanging) wheel lateral

force and contact work, respectively, as functions of time.

As the front truck enters the spiral curve, the leading wheelset

rapidly displaces laterally toward the outer rail. The wheelset over-

shoots its desired rolling radius difference and thus the lateral dis-

placement decreases slightly and then grows again. The leading outer

wheel approaches its flange, but maintains single-point tread contact

until it encounters the flange at t = 1.375 sec (i.e., 62 ft into the

spiral) . Two-point contact occurs at the leading outer wheel for the

remainder of the simulation. The trailing wheelset of the front truck

shows similar but somewhat lagged behavior. It displaces laterally
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maintaining single-point tread contact until the outer wheel impacts its

flange at t = 3.000 sec (i.e., 135 ft into the spiral). It stays in two-

point tread and flange contact for the remainder of the simulation.

The leading and trailing wheelsets of the rear truck displace

rapidly toward the outer rail at t - 2.0 sec (i.e., - 90 ft into the

spiral) . The leading outer wheel of the rear truck impacts its flange

at t = 2.250 sec (i.e., 101 ft into the spiral) causing two-point con-

tact to occur momentarily, and then bounces back into tread contact

until t = 2.750 sec (i.e., 124 ft into the spiral). At all subsequent

times two-point contact occurs at the leading outer wheel of the rear

truck. The trailing wheelset of the rear truck maintains single-point

tread contact during the entire transition spiral section. Two-point

tread and flange contact occurs at the trailing outer wheel at t = 3.375

sec (i.e., 2 ft into the constant radius curve).

Figure 3.1b shows the angle of attack histories of the four wheelsets

of the vehicle. As the vehicle enters the curve, the wheelsets of the

front truck initially develop positive angles of attack. The wheelsets

of the rear truck, which are still on tangent track, have zero angles.

During negotiation of the transition spiral track, the angles of attack

of all the wheelsets display oscillatory behavior. The oscillations

decay as the vehicle negotiates the constant radius curve track. In

steady-state conditions, the leading wheelsets of the front and rear

trucks develop angles of attack of 0.33 deg. and the trailing wheel-

sets develop angles of ~ 0.06 deg.

The lateral force at the leading outer wheel of the vehicle as

a function of time is shown in Figure 3.2a. The force increases rapidly
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at t = 1.375 sec when the leading outer wheel hits the flange and two-

point contact develops. The force continues to increase, reaching a

maximum of 5270 lb at t = 3.250 sec (i.e., 146 ft into the spiral) just

before entering the constant radius curve. The peak force exceeds the

steady-state force by 17%.

The leading outer wheel, front truck, and vehicle work as a

function of time are shown in Figure 3.2b. The front truck work is the

sum of the work expended at the contact patches at the four wheels of

the front truck; similarly, the vehicle work is the sum of the work at

all contact patches. At t = 1.375 sec, two-point contact develops at

the leading outer wheel, and the work function increases significantly.

As the vehicle continues through the curve, the contact work at the

leading outer wheel and at the front truck continues to increase and

each approaches a constant. The vehicle work increases rapidly at

t = 2.250 sec when the leading outer wheel of the rear truck moves into

the flange and two-point contact occurs. The work decreases since

single-point tread contact is restored and then increases at t = 2.750

sec when two-point contact again develops. The vehicle work continues

to increase and then reaches a constant as steady-state conditions are

approached.

3.2.1 Effect of Track Curvature on Curve Entry Performance of a

Conventional Vehicle

The track curvature is an important parameter influencing steady-

state and dynamic curving performance. The steady-state results show

that in general as tighter curves are negotiated, the flanging wheel

contact work and lateral force increase. To determine the effect of track

curvature on the transient behavior, a limited study of curve entry
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performance of conventional vehicles with new wheels has been conducted.

The response of a baseline conventional vehicle with new wheels

negotiating a 150 ft curve entry spiral into a 2.5° curve at a balance

speed of 90 ft/sec is shown in Figures 3.3 and 3.4. Figures 3.3a and 3.3b

show the wheelset lateral excursion and angle of attack histories,

respectively. Figures 3.4a and 3.4b show the flanging wheel lateral force

and contact work histories, respectively. Single-point contact occurs at

all wheels during the simulation. As the vehicle enters the transition

spiral curve, the wheelsets of the front truck displace laterally toward

the outer rail and oscillate, overshooting their desired positions (for

the correct rolling radius difference). The wheelsets of the rear truck,

which maintain their centered positions until they enter the curve,

displace out and in slightly and then also displace laterally toward the

outer rail and oscillate. In the constant radius curve section, the

lateral excursions settle to the steady values: ^ 0.286 in for the

leading wheelsets of the front and rear truck and ~ 0.221 in for the

trailing wheelsets of the two trucks.

The wheelset angles of attack as a function of time, shown in

Figure 3.3b exhibit sustained oscillatory behavior in the transition

spiral curve. In the constant radius curve section, the oscillations

slowly decrease. Steady-state conditions are reached at t~ 3.0 sec

(i.e., 120 ft into the constant radius curve).

Figure 3.4a shows the oscillatory behavior of the leading outer or

flanging wheel lateral force as a function of time. The force increases

as the vehicle enters the spiral curve, peaking at 1640 lb at t = 0.751

sec (i.e., 68 ft into the spiral). The force then decreases and
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Figure 3. 3 History of (a) Wheelset Lateral Excursions

and (b) Angles of Attack of a Baseline

Conventional Vehicle with New Wheels
Negotiating a 150 ft Curve Entry Spiral

into a 2.5° Curve at a Balance Speed of

90 ft/sec.
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Figure 3.4 History of (a) Leading Outer (i.e.. Flanging)
Wheel Lateral Force and (b) Contact Work for

a Baseline Conventional Vehicle with New
Wheels Negotiating a 150 ft Curve Entry
Spiral into a 2.5° Curve at a Balance Speed

of 90 ft/sec.
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eventually becomes negative. As the vehicle enters the constant radius

curve section, the force reaches a minimum of -440 lb at t = 1.688 sec

(i.e., 2 ft into the constant radius curve) . The force increases and

settles to its steady value of 340 lb by t = 3.0 sec (i.e., 120 ft into

the constant radius curve)

.

The contact work expended as the leading outer wheel, at the front

truck, and at the vehicle as a function of time is shown in Figure 3.4b.

The work histories oscillate, until settling to their steady-state

values: 1 ft-lb/ft for the leading outer wheel, 2 ft-lb/ft for the front

truck, and 4 ft-lb/ft for the vehicle. The leading outer wheel work

reaches- a maximum of 2 ft-lb/ft at t - 1.000 sec (i.e., 146 ft into the

spiral) . The maximum values occur when the wheelset angles of attack

are extreme, indicative of large lateral creepages

.

In summary, important transient behavior develops for a conventional

vehicle with new wheels negotiating a 150 ft transition spiral into a

shallow 2.5° curve at balance speed. The wheelset excursions and angles,

the leading outer wheel lateral force, and the contact work significantly

exceed their steady-state values. The wheelsets show sustained lateral

and yaw oscillations in the transition spiral curve. These oscillations

dampen out in the constant radius curve, and eventually steady-state

conditions are achieved.

In contrast, the response of the vehicle traversing a 150 ft spiral

into a moderate 10° curve, shown in Figures 3.1 and 3.2 indicates that

the peak flanging wheel force exceeds the steady-state force by 17% for

the vehicle running into the 10° curve, whereas the peak force exceeds

the steady-state force by 388% for the vehicle negotiating the 2.5° curve.
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Table 3.2 summarizes the steady-state and peak flanging wheel force and

contact work of a baseline conventional vehicle with new wheels entering

a 2.5°, 5°, and 10° curve at balance speed. As tighter curves are

traversed, the ratio of dynamic to steady-state forces decreases. The

wheelsets displace to the flange clearance and remain there. In comparison,

for negotiation of shallow curves, the wheelsets approach the flanges but

always remain in tread contact. The wheelsets exhibit "hunting "-type

oscillations along the transition spiral, which result in significant

dynamic behavior.

3.2.2 Effect of Wheel/Rail Profile on Curve Entry Performance of a

Conventional Vehicle

The results of the steady-state studies presented in the Interim

report suggest that single-point contact profiles, such as Heumann wheel

profiles, offer improved performance in terms of decreased contact work

in comparison to two-point contact profiles
,
such as new AAR wheel pro-

files. This section addresses the influence of wheel/rail profile on

dynamic curving performance.

A curve entry simulation has been conducted to determine the dynamic

response of a baseline conventional vehicle with Heumann wheels (for

which k = 6.50 x 10^ lb/ft) negotiating a 150 ft transition spiral into
px

a 10° curve at a balance speed of 45 ft/sec. The response histories are

shown in Figures 3.5 and 3.6. The wheelset lateral excursions and angles

of attack as functions of time are shown in Figures 3.5a and b

respectively. The leading outer wheel lateral force and contact work as

functions of time are shown in Figures 3.6a and b respectively. Since

Heumann wheels are employed, single-point contact occurs at the wheels

at all times.

3-12



TABLE 3.2

LEADING OUTER WHEEL FORCE AND WORK OF A BASELTNE
CONVENTIONAL VEHICLE WITH NEW WHEELS NEGOTIATING

A 150 FT CURVE ENTRY SPIRAL INTO A 2.5°, 5°, AND 10° CURVE

DECREE
CURVE
(deg)

LEADING OUTER WHEEL
LATERAL FORCE (lb)

LEADING OUTER WHEEL
WORK (ft-lb/ft)

Steady-
State

Peak % Increase
Steady-

State
Peak % Increase

2.5° 340 1660 388% 1 2 100%

5° 2060 2650 29% 36 41 14%

o
O

i

—

<

4520 5270 17% 87 93 7%
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Figure 3-5 History of (a) Wheelset Lateral Excursions
and (b) Angles of Attack of a Baseline
Conventional Vehicle with Heumann Wheels
Negotiating a 150 ft Curve Entry Spiral
into a 10° Curve at a Balance Speed of

45 ft/sec.
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Figure 3.6 History of (a) Leading Outer (i.e.. Flanging)
Wheel Lateral Force and (b) Contact Work of a

Baseline Conventional Vehicle with Heumann Wheels
Negotiating a 150 ft Curve Entry Spiral into
a 10° Curve at a Balance Speed of 45 ft/sec.
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As the vehicle enters the curve, the leading wheelset of the front

truck displaces laterally toward the outer rail, as shown in Figure 3.5a.

The leading outer wheel gradually rides up into the flange and stays in

flange root contact. The trailing wheelset displacement of the front truck

increases and then decreases slightly, always staying near the centered position.

The leading wheelset of the rear truck oscillates about the centered

position and then smoothly displaces toward the outer rail. The trailing

wheelset of the rear truck also oscillates about the centered position.

The steady-state excursions are ^ 0.346 in for the leading wheelsets of

the two trucks and ~ 0.034 in for the trailing wheelsets.

The angle of attack histories, shown in Figure 3.5b show that the

trailing wheelsets of both trucks remain near radial alignment during the

simulation. For the leading wheelsets, the angles of attack increase and

approach a constant as the vehicle negotiates the curve. The steady-state

angles of attack are ^ 0.529 deg. and 0.013 deg. for the leading and

trailing wheelsets of the two trucks, respectively.

The leading outer wheel lateral force shown in Figure 3.6a increases

as the vehicle enters the curve. It reaches a maximum of 4950 lb when

the leading outer wheel rides up into the flange at t = 3.250 sec (i.e.,

146 ft into the spiral curve) . The force decreases in the constant radius

section to a steady value of 4050 lb which is 22% less than the peak

value

.

Figure 3.6b shows the contact work for the leading outer wheel, the

front truck, and the vehicle as a function of time. The contact work

functions increase as the vehicle enters the curve and approach constant

values. The maximum leading outer wheel work is 72 ft-lb/ft versus
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62 ft-lb/ft for steady-state and occurs at t = 3.250 sec (i.e., 146 ft

into the spiral) . For the front truck and vehicle the maximum work is

144 and 243 ft-lb/ft, respectively. In contrast, the steady-state values

are 121 and 242 ft-lb/ft, respectively. Dynamic effects have little

influence on the contact work functions.

3.2.3 Effect of Spiral Length on Curve Entry Performance of a

Conventional Vehicle

A study of the effect of spiral length on the peak flanging wheel

lateral force of a conventional vehicle with new wheels has been conducted.

In the study, the vehicle negotiates a transition spiral of varying length

into a 10° curve at a balance speed of 45 ft/sec. The peak flanging force

as a function of spiral length is shown in Figure 3.7. Reducing the

spiral length increases the peak lateral force resulting from the initial

flange contact. For short spiral lengths less than 75 ft, the peak force

significantly exceeds the steady-state force. As the spiral length

increases, the peak lateral force decreases rapidly and approaches the

steady-state flange force. For very long spiral lengths (i.e., greater

than the maximum value of 200 ft plotted in Figure 3.7) the peak and

steady-state forces coincide implying that the steady-state force

represents the maximum lateral force.

3.3 Curve Entry Performance of a Self-Steered Radial Vehicle

A baseline self-steered vehicle with new wheels (for which k =
px

1.20 x 10
5

lb/ft, k^
2

= 1.0 x 10
3

ft-lb/rad, k
g2

= 1.0 x 10
6

lb/ft) has

been simulated passing through a 150 ft transition spiral curve into a

10° curve at a balance speed of 45 ft/sec. Response histories of wheelset

lateral excursions and angles of attack are shown in Figures 3.8a and b

respectively. Histories of flanging wheel force and contact work are
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Vehicle with New Wheels Entering a 10° Curve at
a Balance Speed of 45 ft/sec.
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Radial Vehicle with New Wheels Negotiating
a 150 ft Curve Entry Spiral into a 10° Curve
at a Balance Speed of 45 ft/sec.
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shown in Figures 3.9a and b respectively.

As the front truck enters the spiral curve, the leading wheelset

rapidly displaces toward the outer rail. The leading outer wheel

approaches the flange, displaces inward slightly, and then hits the

flange at t = 1.200 sec (i.e., 54 ft into the spiral curve). Two-point

tread and flange contact occurs at the leading outer wheel and is

maintained for the remainder of the simulation. The trailing wheelset of

the front truck displaces laterally toward the outer rail but does not

impact the flange and then displaces inward. Single-point tread contact

occurs at both wheels of the trailing wheelset of the front truck during

the simulation.

Once in the curve, the leading and trailing wheelsets of the rear

truck both displace out and in and then approach the outer rail. The

leading outer wheel of the rear truck hits the flange at t = 2.375 sec

(i.e., 107 ft into the spiral curve) and two-point tread and flange

contact occurs. It then bounces in, and single-point tread contact is

restored until t = 2.750 sec (i.e., 124 ft into the spiral curve) at

which time two-point contact again occurs. The leading outer wheel of

the rear truck remains in two-point contact for the remainder of the

simulation. The trailing wheelset of the rear truck displaces toward

the outer rail and then returns slightly, always maintaining single-point

tread contact at its wheels.

In steady-state, the leading wheelsets of the front and rear truck

displace to 0.325 in; the trailing wheelsets of the two trucks displace

to 0.162 in. In comparison to the conventional vehicle response of

Figure 3.1 the trailing wheelsets of the front and rear self-steered

trucks do not displace to the flange clearance in steady-state.
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Figure 3.9 History of (a) Leading Outer (i.e.. Flanging
Wheel Lateral Force and (b) Contact Work of
a Self-Steered Radial Vehicle with New
Wheels Negotiating a 150 ft Curve Entry
Spiral into a 10° Curve at a Balance Speed
of 45 ft/sec.
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The wheelset angles of attack as a function of time are shown in

Figure 3.8b. As the vehicle negotiates the spiral curve, the angles of

attack of all the wheelsets oscillate, increasing and decreasing rapidly

especially when two-point contact occurs. In the constant radius curve

section, the oscillations decrease and steady-state conditions are

achieved. The steady-state angles of attack are: 0.162 deg for the lead-

ing wheelsets and 0.072 deg for the trailing wheelsets of the two trucks.

Figure 3.9a shows the leading outer wheel lateral force as a function

of time. The force increases as the vehicle enters the spiral curve and

jumps at t = 1.200 sec when the leading outer wheel impacts the flange

and two-point contact occurs. The force continues to rise, peaking at

5090 lb at 3.250 sec (i.e., 146 ft into the spiral curve) and then

settles to its steady-state value of 4260 lb. The peak force exceeds the

steady-state force by 20%.

Figure 3.9b shows the leading outer wheel, front truck, and vehicle

work as a function of time. The work increases as the vehicle negotiates

the curve, increasing significantly at t = 1.200 sec when the leading

outer wheel of the front truck bangs into the flange and two-point

contact occurs. The vehicle work increases significnantly at t = 2.375

sec when the leading outer wheel of the rear truck impacts the flange and

two-point contact occurs. The vehicle work then decreases, and increases

again at t = 2.750 sec when flanging conditions are restored at the

leading outer wheel of the rear truck. The work for the leading outer

wheel, front truck, and vehicle continues to rise as the vehicle negotiates

the curve. The leading outer wheel and front truck work reach maximum

values of 75 and 106 ft-lb/ft, respectively, at t = 3.250 sec. The

3-22



maximum work for the vehicle coincides with the steady-state work. Steady

state conditions are achieved as the vehicle enters the constant radius

curve. The steady-state work at the leading outer wheel, front truck,

and vehicle is 67, 95, 190 ft-lb/ft, respectively.

3.3.1 Effect of Wheel/Rail Profile on the Curve Entry Performance
Of A Self-Steered Radial Vehicle

This section discusses the influence of wheel/rail profile on the

dynamic curving performance of a self-steered radial vehicle. A baseline

self-steered vehicle with Heumann wheels (for which k = 5.0 x 10^ lb/ft,
px

3 6
k
^2

= 1-0 x 10 ft-lb/rad, k^ = 1.0 x 10 lb/ft) was simulated traversing

a 150 ft curve entry spiral into a 10° curve at a balance speed of 45 ft/

ft/sec. The response histories are shown in Figures 3.10 and 3.11. The

wheelset lateral excursions and angles of attack as functions of time are

shown in Figures 3.10a and b respectively. The leading outer wheel

lateral force and contact work as functions of time are shown in Figures

3.11a and b respectively. For the simulation, single-point wheel/rail

contact occurs since Heumann wheels are employed. The dynamic response

histories for the baseline self-steered vehicle with Heumann wheels are

similar in character to the histories for the baseline conventional

vehicle with Heumann wheels shown in Figures 3.5 and 3.6.

As the vehicle negotiates the curve, the leading wheelset of the

front truck displaces towards the outer rail and flange contact occurs.

The leading outer wheel stays in flange contact for the remainder of

the simulation. The trailing wheelset of the front truck stays near the

centered position, increasing and decreasing slightly before reaching a

steady value. The leading wheelset of the rear truck oscillates about

the centered position and then displaces towards the outer rail. The
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Figure 3.10 History of (a) Wheelset Lateral Excursions
and (b) Angles of Attack of a Self-Steered
Radial Vehicle with Heumann Wheels
Negotiating a 150 ft Curve Entry Sprial
into a 10° Curve at a Balance Speed of

45 ft/sec.
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trailing wheelset of the rear truck, oscillates about the centered position

and then settles to a steady value. The steady—value excursions are

~ 0.341 in for the leading wheelsets of the two trucks and ^--0.013 in

for the trailing wheelsets.

Figure 3.10b shows the wheelset angle of attack histories. The

leading wheelsets of both trucks develop positive angles of attack as the

vehicle negotiates the curve. The maximum deviation is 0.470 deg at

t = 3.200 sec (i.e., 144 ft into the spiral curve) for the leading wheel-

set of the front trucks. The angles of attack of the trailing wheelsets

oscillate about radially aligned positions. For the leading and trailing

wheelsets of the two trucks, the steady-state angles of attack are 0.446

deg and 0.010 deg, respectively.

The leading outer wheel lateral force, shown in Figure 3.11a

increases as the vehicle negotiates the curve. The force increases

significantly as the leading outer wheel displaces laterally and flange

contact occurs. The maximum lateral force is 4800 lb and occurs at

t = 3.200 sec (i.e., 144 ft into the spiral curve). The force oscillates

and then reaches a steady-state value of 3940 lb, which is 18% less than

the peak value.

Figure 3.11b shows the contact work for the leading outer wheel,

the front truck, and the vehicle as a function of time. The contact work

functions increase as the vehicle enters the curve and approach constant

values. The maximum leading outer wheel and front truck work is 64 and

128 ft-lb/ft, respectively, and occurs at t = 3.200 sec. The maximum

vehicle work is 218 ft-lb/ft and occurs in steady-state conditions. For

the leading outer wheel and front truck, the steady-state work is 56 and
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109 ft-lb/ft, respectively. Dynamic effects have little influence on the

contact work histories.

3 . 4 Curve Entry Performance of a Forced-Steered Radial Vehicle

Steady-state curving results indicate that forced-steered radial

vehicles potentially offer significant performance benefits (in terms of

decreased contact work) in comparison to conventional vehicle performance.

This section addresses the dynamic curving performance of a forced-

steered radial vehicle. An L-type [1] forced-steered vehicle has been

selected for sutdy for consistency with the earlier steady-state curving

studies. The curvature steering gain is set to the pure rolling line

gain. The study focuses on the performance of the FSR I forced-steered

radial design, which has a soft primary longitudinal stiffness of

k = 7.0 x 10
4

lb/ft.
px

A baseline FSR I forced-steered vehicle with new wheels (for which

k
^2

= 1.68 x 10^ ft-lb/rad, k^ = 1.0 x 10^ Ib/ft) was simulated passing

through a 150 ft transition spiral into a 10° curve at a balance speed

of 45 ft/sec. Response histories of wheelset lateral excursions and

angles of attack are shown in Figures 3.12a and b, respectively.

Histories of flanging wheel force and contact work are shown in Figures

3.13a and b, respectively.

As the front truck enters the spiral curve, the leading wheelset

rapidly displaces toward the outer rail. The leading outer wheel

approaches the flange, displaces inward slightly, and then moves out

impacting the flange, at t = 1.200 sec (i.e., 54 ft into the spiral

curve) . Two-point tread and flange contact occurs at the leading

outer wheel and is maintained during negotiation of the remaining
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Figure 3.12 History of (a) Wheelset Lateral Excursions
and (b) Angles of Attack of a FSR I Forced-
Steered Radial Vehicle with New Wheels
Negotiating a 150 ft Curve Entry Spiral
into a 10° Curve at a Balance Speed of

45 ft/sec.
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FSR I Forced-Steered Radial Vehicle with
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Speed of 45 ft/sec.
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spiral section and constant radius curve. The trailing wheelset of the

front truck displaces laterally toward the outer rail, but the outer

wheel does not impact the flange. The trailing wheelset then displaces

inward. Single-point tread contact occurs at both wheels of the trailing

wheelset of the front truck during the simulation.

As the rear truck enters the spiral curve, the leading and trailing

wheelsets both displace out and in and then approach the outer rail.

The leading outer wheel of the rear truck impacts the flange at t = 2.500

sec (i.e., 112 ft into the spiral) and two-point tread and flange contact

occurs. The wheel rebounds back to single-point tread contact and main-

tains single-point contact until t = 2.875 sec (i.e., 129 ft into the

spiral) . The leading outer wheel of the rear truck then develops two-

point tread and flange contact and maintains this condition for the

remainder of the simulation. The trailing wheelset of the rear truck

displaces toward the outer rail and then returns slightly. Single-point

tread contact is maintained at the wheels of the trailing wheelset of

the rear truck.

The steady-state lateral excursions are 0.324 in for the leading

wheelsets and 0.223 in for the trailing wheelsets of the two trucks.

The history of wheelset lateral excursions shown in Figure 3.12 for

the FSR I forced-steered vehicle is very similar to the history of

excursions shown in Figure 3.8 for the self-steered radial vehicle.

Figure 3.12b shows the wheelset angles of attack as a function

of time. The angles of attack oscillate as the vehicle enters the

curve. In the constant radius curve the oscillations dampen out and

the angles of all wheelsets approach the same steady-state value of
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0.079 deg. Ideally, the forced-steering action should position the

wheelsets radially Ci.e. >
yielding zero angles of attack). However,

the pure rolling line steering gain slightly understeers the wheelsets,

and thus the wheelsets develop slightly positive angles of attack in

steady-state. In comparison to the angles of attack of the self-steered

vehicle (shown in Figure 3.8b) , the leading and trailing wheelsets of the

forced-steered vehicle adopt identical angles in steady-state.

The flanging wheel lateral force as a function of time is shown in

Figure 3.13a. The force increases significantly at t = 1.200 sec

(i.e., 54 ft into the spiral) when the leading outer wheel impacts the

flange and two-point contact occurs. As the vehicle negotiates the curve,

the force continues to increase. At t = 3.200 sec (i.e., 144 ft into the

spiral curve) the maximum force of 4310 lb develops. The maximum force

exceeds the steady-state force of 3480 lb by 24%.

The work expended at the leading outer wheel, the front truck, and

the vehicle as a function of time is shown in Figure 3.13b. When the

leading outer wheel impacts the flange at t = 1.200 sec, the work

increases significantly. Following impact, the work decreases and then

continues to rise. The work at the leading outer wheel and front truck

reaches a maximum of 55 and 82 ft-lb/ft, respectively, at t = 3.200 sec.

The vehicle work increases significantly at t = 2.875 sec when two-point

contact develops at the leading outer wheel of the rear truck. The

maximum vehicle work is 138 ft-lb/ft and occurs in steady-state condi-

tions. The steady-state work at the leading outer wheel and front truck

is 48 and 69 ft-lb/ft, respectively.
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3.4.1 Effect of Wheel/Rail Profile on the Curve Entry Performance
of a Forced-Steered Radial Vehicle

In this section, the influence of wheel/rail profile on the dynamic

curving performance of a forced-steered radial vehicle is discussed. A

dynamic simulation was conducted to determine the curve entry performance

of a baseline FSR I forced-steered vehicle with Eeumann wheels (for

6 6
which k

^2
= 1*66 x 10 ft-lb/ft, k^ = 1*0 x 10 lb/ft) negotiating a

150 ft spiral into a 10° curve at a balance speed of 45 ft/sec. Response

histories of wheelset lateral excursions and angles of attack are shown

in Figures 3.14a and b, respectively. Histories of flanging wheel force

and contact work are shown in Figures 3.15a and b, respectively.

As the vehicle enters the curve, the leading and trailing wheelsets

of the front truck displace toward the outer rail, but maintain tread

contact. The maximum lateral excursion occurs for the leading wheelset

at t = 3.250 sec (i.e., 146 ft into the spiral curve) and is 0.248 in.

The leading and trailing wheelsets of the rear truck increase and decrease

slightly and then develop positive excursions. The steady-state excur-

sions are 0.158 in for the trailing wheelsets of the two trucks.

Figure 3.14a shows the wheelset angles of attack as a function of

time. Very small angles of attack develop during the simulation. The

largest magnitude is 0.073 deg, which occurs for the leading wheelset

of the front truck at t = 2.875 sec (i.e., 129 ft into the spiral curve).

In the curve entry spiral, the angles of attack of all wheelsets oscillate

about near radial positions. In the constant radius curve, the leading

wheelsets of the front and rear trucks develop positive angles of attack;

the trailing wheelsets approach perfect radial alignment. The steady-

state angles are ^ 0.002 deg for the trailing wheelsets of the two trucks.
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Figure 3.14 History of (a) Wheelset Lateral Excursions
and (b) Angles of Attack of a FSR I Forced-
Steered Radial Vehicle with Heumann Wheels
Negotiating a 150 ft Curve Entry Spiral
into a 10° Curve at a Balance Speed of
45 ft/sec.
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Figure 3.15 History of (a) Leading Outer (i.e.. Flanging)

Wheel Lateral Force and (b) Contact Work of

a FSR I Forced-Steered Radial Vehicle with

Heumann Wheels Negotiating a 150 ft Curve

Entry Sprial into a 10° Curve at a Balance

Speed of 45 ft/sec.
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The forced-steering action successfully positions the trailing wheelsets

radially (since minimal flange forces act on the trailing wheelsets)

.

The leading outer wheel lateral force is shown in Figure 3.15a.

The force is characterized by significant oscillations. The force

increases to a maximum of 1820 lb at t = 2.250 sec (i.e., 101 ft into

the spiral curve). As the vehicle enters the constant radius curve, the

force decreases and reaches a steady-state value of 1350 lb. The peak

force exceeds the steady-state force by 35%.

The work at the leading outer wheel, the front truck, and the vehicle

is shown in Figure 3.15b. In comparison to the work expended by the other

vehicles in previous simulations, the work for the forced-steered vehicle

with Heumann wheels is very small. The maximum work is 7, 13, and 22

ft-lb/ft for the leading outer wheel, front truck, and total vehicle,

respectively. The work in steady-state is 6, 7, and 14 ft-lb/ft,

respectively. In this case, dynamic effects influence the contact work

histories

.

3 . 5 . Comparative Curve Entry Performance of Conventional, Self-Steered,
and Forced-Steered Radial Vehicles

The previous sections have examined the dynamic curve entry perfor-

mance of conventional, self-steered, and forced-steered radial vehicles

with new and Heumann wheels. Baseline vehicles have been studied to

ensure that the vehicles have identical linear critical speeds. This

section compares the transient curving performance of the different

vehicles

.

The steady-state and peak values of the leading outer wheel lateral

force and contact work are summarized in Tables 3.3 and 3.4 for vehicles

with new and Heumann wheels, respectively. The tables show that the
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table 3.3

DYNAMIC CURVE ENTRY PERFORMANCE IN TERMS OF FLANCINC WHEEL
LATERAL FORCE AND CONTACT WORK FOR BASELINE VEHICLES WITH
NEW WHEELS NEGOTIATING A 150 FT SPIRAL INTO A 10° CURVE

AT A BALANCE SPEED OF 45 FT/SEC.

NEW WHEELS

CONVENTIONAL
SELF-STEERED

RADIAL
FORCED-STEERED
RADIAL (FSR I)

Steady-
State

Peak
X

Increase
Steady-
State

Peak
7.

Increase
Steady-
State

Peak
%

Increase

Flanging Wheel
Lateral Force

(lb)

4520 5270 17 4260 5090 20 3480 4310 24

Flanging
Wheel Work

(ft-lb/ft)
87 93 7 67 75 12 48 55 15

TABLE 3 .4

DYNAMIC CURVE ENTRY PERFORMANCE IN TERMS OF FLANCING WHEEL LATERAL FORCE AND

CONTACT WORK FOR BASELINE VEHICLES WITH HEUMANN WHEELS NEGOTIATING A 150 FT

SPIRAL INTO A 10° CURVE AT A BALANCE SPEED OF 45 FT/SEC.

HEUMANN WHEELS

CONVENTIONAL
SELF-STEERED

RADIAL
FORCED-STEERED
RADIAL (FSR I)

Steady-
State

Peak
X

Increase
Steady-
State

Peak
%

Increase

Steady-
State

Peak
%

Increase

Flanging Wheel
Lateral Force

(lb)

4050 4950 22 3940 4800 22 1350 1820 35

Flanging
Wheel Work

(ft-lb/ft)

62 72 16 56 64 14 6 7 17
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FSR I forced-steered vehicle offers improved performance in terms of

decreased steady-state and peak forces and work in comparison to the

conventional and self-steered vehicles. For example, the peak work is

55 ft-lb/ft for the forced-steered vehicle with new wheels in comparison

to 93 and 75 ft-lb/ft for the conventional and self-steered vehicles,

respectively. The tables also show that the peak/steady-state force

and work ratios are highest for the forced-steered vehicle (in terms of

percent increase). For example, for vehicles with new wheels, the peak

work exceeds the steady-state work by 15% for the forced-steered vehicle

and by 7 and 12% for the conventional and self-steered vehicles,

respectively. Table 3.4 shows that the greatest improvement in perfor-

mance is obtained with the forced-steered vehicle with Heumann wheels.

The steady-state and peak work is 6 and 7 ft-lb/ft, respectively.

However, this vehicle experiences the largest dynamic overshoot in terms

of percent. For instance, the peak work exceeds the steady-state work by

17%. The peak lateral force exceeds the steady-state force by 35%.

In summary, the data of Tables 3.3 and 3.4 suggest that significant

performance improvements can be achieved by using forced-steered vehicles

with Heumann wheels. Forced-steered vehicles experience a higher ratio

of dynamic to steady-state force in curve entry than conventional and

self-steered vehicles. However, the magnitudes of the transient

characteristics of the forced-steered vehicles are smaller than those

which develop for conventional and self-steered vehicles.

3 . 6 Dynamic and Steady-State Model Comparisons

This chapter has explored the dynamic curving performance of

conventional, self-steered, and forced-steered radial vehicles with new
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and Heumann wheels. The dynamic curving analysis used for the study

incorporates a simple model of the secondary yaw suspension system.

The model assumes that a coulomb damper element which saturates at the

breakaway torque and has a linear viscous band acts between each truck

and carbody. In steady-state conditions, the truck and carbody yaw

rates vanish and thus no secondary yaw torques develop. The steady-state

curving analysis described in the Interim Report I 1 ] assumes that

breakaway has occurred at each truck centerpin, and thus includes

constant secondary yaw breakaway torques. Due to the different treatment

of the secondary yaw torque, the dynamic model does not converge to a

condition which is identical to the steady-state model. The differences

in force and work predicted by the dynamic and steady-state models are

summarized in Table 3.5. The data in the table show that the steady-state

analysis which includes finite yaw torque between the track and carbody

predicts larger lateral wheel forces than the dynamic analysis which in

steady-state curve negotiation has zero yaw torque between the truck and

carbody. For the simulations with trucks employing new wheels, the

dynamic analysis converges to forces which are within 13% of the steady-

state analysis values for all three truck designs and for trucks with

Heumann wheels, the two simulations agree within 12% for conventional

and radial trucks and within 20% for the low forces predicted for the

forced steered truck.

The contact work for all the cases predicted by the dynamic analysis

is within 10% of the values predicted by the steady-state analysis except

for the forced steering vehicle with Heumann wheels where a 1.0 ft-lb/ft

difference exists which is within the accuracy bounds of the computation.
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The differences in representation of the yaw torque restraint between

the track and carbody do not result in significant differences in

prediction of contact wear or lateral force.

3 . 7 Review of Field Test Data

Limited field test data for dynamic curving forces is available.

Field tests were conducted during the Fall of 1981 on the Washington Metro-

politan Area Transit Authority (WMATA) [27]. The program investigated

the influence of wheel profiles and suspension modifications on high

speed stability and assessed the feasibility of a retrofit to the truck

to improve curving performance.

Figures 3.16 and 3.17 present results from the WMATA test. Figure

3.16 shows measured steady state lateral flange forces on curve #37 while

Figure 3.17 shows measured peak high rail flange forces. For example at

approximately 40 mph and 4° cant deficiency the figures show a 4000 lb

steady state flange force and a 7800 lb peak force, i.e., a nearly 2:1

ratio of peak to steady state high rail flange forces for the 1:20 wheel

in a standard bushing.

The experimental data show that both wheel profile and suspension

stiffness have an influence on steady-state and peak dynamic forces. As

the bushing stiffness is reduced, the steady-state lateral force decreases

from 4000 to 1800 lbs for the 1:20 wheels and from 5400 to 3800 lbs for

the cylindrical wheels at balance speed. The 1:20 wheel profiles have

reduced forces in comparison to the cylindrical wheels. Similar trends

exist in the dynamic data.

The dynamic data at balance speed for both cylinderical and 1:20

wheels have a magnitude which is between 1.8 and 2.0 times the equivalent
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steady-state data. For the soft bushing suspension, the peak forces for

the cylindrical and 1:20 wheel are both approximately 6250 lbs while

equivalent steady-state data are respectively 3800 lbs and 1800 lbs.

In order to provide a preliminary evaluation of the dynamic curving

model, the baseline conventional vehicle was simulated passing through

150 ft transition spiral to a 7.8° curve with a 4° cant angle to represent

curve #37 at WAMATA. The baseline vehicle primary suspension was

£
increased to 1.38x10 lb/ft to approximate a conventional truck equipped

with a standard bushing. The results of the simulation for operation at

balance speed with the AAR 1:20 profile are shown in Figure 3.18. The

simulation data shows a peak force of 6500 lb and steady-state force of

5600 lbs in comparison to the experimental data showing 8000 lb peak

force and 4000 lb steady-state force. These data are not in good agree-

ment. Both the experimental data and the simulation studies cited in

previous sections have shown that wheel-track profile, geometry and track

suspension parameters have strong influences on peak and steady-state

forces, thus detailed knowledge of track and vehicle parameters is

required to provide a comparison between the analytical model and

experimental data.

To provide an indication of these influences, a simulation has been

made with all parameters identical to those of Figure 3.18 except the

wheel profile has been modified to a Heumann profile. With the Heumann

profile, the peak force in curve #37 is reduced to 3700 lb and the

steady-state force to 3100 lb. The detailed wheel-track profile geometry

has a strong influence on curving forces. A final simualtion was run to

illustrate the influence of local track conditions on peak curving forces.
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Data for this case in which the vehicle in the constant radius section

of curve #37 was assumed to have its wheelsets in a state corresponding

to the track centerline and allowed to respond in a transient fashion

reaching the steady-state condition after a response lasting 2.5 seconds.

These simulation results are shown in Figure 3.20. In this case, the

peak response force reaches 7200 lbs and then settles to a steady-state

of 3100 lbs. This ratio of greater than 2:1 occurs because of an initial

state which could be achieved through the response to local track

conditions. Large peak force ratios in constant radius curve sections

can be generated by local irregularities. Thus, knowledge of local track

geometry is required to predict peak forces.

In summary , the review of field test data for dynamic curving and

initial comparison with simulation results has identified the need for

further effort. Detailed characterization of vehicle and track parameters

is required. It is recommended that effort be directed to a coupled

analytical/experimental program to develop an experimentally verified

dynamic curving model.
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4.0 SUMMARY AND CONCLUSIONS

A simulation model has been developed to compute the dynamic forces

and motions as a rail vehicle enters, transverses and exits curves. The

model includes the effects of nonlinear, multipoint wheel-rail contact

geometry and is applicable to conventional, self-steered radial and forced

steered truck configurations. The track is represented as a smooth space

curve and has lateral flexibility. Extension of the track representation

to include effects of irregularities is straight forward.

Illustrative simulations of curve entry through a 150 ft spiral

transition to 2.5° - 10° constant radius curves have been performed for

baseline conventional, radial and forced-steered truck designs operating

with new AAR and Heumann wheel profiles. The parametric studies have

been conducted for vehicles running at balance speed.

Data for the conventional truck design has shown that dynamic wheel-

rail forces occuring during negotiation of a 150 spiral transition to

2.5°, 5° and 10° constant radius curves increase respectively from 1660

lbs, to 2650 lbs and to 5270 lbs. These peak dynamic forces represent

increases from steady-state values respectively of 388%, 29% and 17% as

curve radius decreases. Thus, dynamic forces are significantly greater

than steady-state forces for large radius curves where the overall force

levels are small. For 5° curves and greater the dynamic peak forces are

within 30% of the steady-state forces and for smaller radius curves,

initial flange contact occurs early in the transition and is maintained

throughout the curve.

Studies in which the transition spiral entry length was varied for

the conventional truck with new wheels entering a 10° curve indicate
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that as spiral length is reduced from 150 ft to 100 ft and then to 75 ft,

the peak dynamic forces increase from 5270 lb to 5450 lb to 6250 lbs.

Thus, as spiral transition length is decreased, peak dynamic forces

increase with the 75 ft length having almost a 20% increase in peak forces

compared with the 150 ft spiral. For short spiral lengths of 50 ft or less

entering 10° curves, peak forces 1.8 times steady-state forces are

reached, and short length transitions can lead to significant ratios of

peak to steady-state forces for high degree curves.

Data comparing the dynamic curving forces for conventional, radial

and forced steering trucks traversing a 150 ft spiral transition to a 10°

curve have shown that significant decreases in both steady-state and peak

dynamic forces may be achieved using forced steered trucks with Heumann

wheel profiles. For all three truck designs both steady-state and peak

forces are smaller with a Heumann than a new AAR wheel profile with peak

force reductions of 5-6% for the baseline conventional and self-steered

radial trucks and of 58% for the forced steered baseline design. For the

cases considered, the Heumann wheel profile has a significant influence

on peak forces for the forced steered design and relatively modest

influences for the conventional and radial baseline track designs.

In the simulation cases, the peak dynamic curving forces for the

three trucks with Heumann wheel profiles are 4950 lb for the conventional,

4800 lb for the radial and 1820 lb for the forced steered truck. In these

cases, the forced steered truck has peak forces less than half of the

forces for the other two baseline designs. The forced steered truck

peak force is 35% greater than the steady-state force while the conventional

and radial vehicles have peak forces 22% above steady-state forces. While
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the forced steered vehicle has a higher dynamic to steady-state force

ratio than the other two baseline designs, its maximum dynamic force is

less than one half the forces with conventional and radial baseline

designs

.

An additional set of simulations have been conducted for a conven-

tional truck with increased primary suspension stiffnesses on a 7.6° curve.

The increased stiffness corresponds to the stiffness of a Washington

Metropolitan Area Transit Authority (WMATA) vehicle. Simulation results

run for the curve with 150 ft transition spiral indicated that peak and

steady-state forces of 6500 lb and 5600 lb occurred. Test data taken at

WMATA have indicated a nearly 2:1 ratio of peak to steady-state force for

these track geometries during negotiation by a conventional vehicle with

new AAR wheels. Additional simulation data have indicated that the ratio

of peak to steady-state forces is strongly influenced by the initial

conditions of the vehicle entering the curve. Thus, the prediction of

specific dynamic forces requires a detailed knowledge of local track

parameters and vehicle parameters. Further effort is required to resolve

the differences between field test data results and the simulation.

In summary this report has provided a simulation model for evaluating

dynamic forces generated during rail transit vehicle curve negotiation.

Further effort is recommended to provide an experimentally verified

dynamic curving model. Such an effort should include a detailed

characterization of the local track conditions in the test section as well

as the vehicle parameters.
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APPENDIX A

DYNAMIC CURVING EQUATIONS OF MOTION OF A WHEELSET

A.l Introduction

The basic element of the rail vehicle steering and support system

is the wheelset. The contact and friction mechanisms which develop at

the wheel/rail interfaces have a dominant effect on vehicle curving be-

havior. The curving performance of a vehicle is a direct function of

the ability of its wheelsets to negotiate a curve.

The majority of previous steady-state and dynamic curving studies

have assumed that each wheel of the vehicle contacts the rails at a

single point. This is an acceptable approximation of tread contact,

but for some wheel/rail profiles this represents a simplistic view of

flange contact. For profiles with steep flanges including many U.S.

profiles, two points of contact can occur simultaneously at the

flanging wheel.

In this Appendix, an analytic model is developed to predict the

dynamic curving performance of a rail vehicle wheelset. The model

represents single-point and two-point wheel/ rail contact at the flanging

wheel and accounts for nonlinearities due to wheel/rail profile geometry

and friction (creep) force saturation. The derivation assumes that

(1) the wheelset maintains continuous wheel/rail contact as it traverses

smooth, laterally flexible, right-handed curved track, and (2) the for-

ward speed of the wheelset as well as the track curvature and super-

elevation (or bank) angle are known functions of the distance along the

track. Wheelset and rail equations are derived by application of
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Newtonian mechanics, resulting in force and moment dynamic equilibrium

equations. By appropriate manipulation, a set of coupled scalar dif-

ferential equations are generated which characterize the dynamic curving

behavior of a wheelset in single-point or two-point contact at the

flanging wheel. The governing equations represent a system of 5 states

for the wheelset and 2 states for the rails. The wheelset has 2 states (i.e

degree of freedom) to describe its lateral and yaw motions as well as a

state to represent its spin speed. Each rail has a state to describe

its lateral motion. When two-point contact occurs, the state of the

rail at the flanging wheel is known due to a constraint relation which

exists between the wheelset and rail lateral motions. Finally, an

appropriate numerical solution procedure involving digital integration

of the equations of motion is described.

A. 2 Coordinate Systems

Six coordinate systems are established, each consisting of mutually

perpendicular right-handed axes x,y,z with corresponding unit vectors

i,j,k. The x,y, and z axes denote the longitudinal, lateral, and

vertical directions, respectively, of each system. The coordinate

systems are:

H

T

I

Horizontal

Track

Inertial

Track-Related



3

1

2

Wheelset (i.e., yaws, rolls, and pitches
with wheelset)

Yaws with wheelset

Yaws and rolls with wheelset Wheelset
Related

The first three systems are used to define the orientation of the track

(which has variable geometry) . The latter three systems are used to de-

fine the orientation of the wheelset.

Figure A.l shows the inertial ("I"), horizontal ("H") , track (
m
T") ,

and wheelset ("W") coordinate systems. The inertial system, "I", is

fixed in inertial space. The track system, "T", with origin 0^ moves

along the track centerline with tangential speed V and is superelevated

relative to the horizontal system, "H". The x^, and
y^

axes lie in the

and points up. The "W" coordinate system has axes aligned with the

principal directions of the wheelset (i.e., fixed in the directions of

the three principal mass moments of inertia) , with its origin at the

*
wheelset s center of mass, W .

Relative to the inertial system, the track system is rotated due

to curvature and superelevation angle. The orientation of the wheelset

is specified relative to the track system by a yaw, roll, and pitch angle

Wheelset axes initially aligned with track axes are rotated successively

through the following sequence: (1) yaw (ij; ) about the z axis, (2) roll
w l

(<£ ) about the rotated x_ axis, and (3) pitch (0 ) about the rotated yw t w i

axis. Figure A. 2 defines the different coordinate system rotations and

track plane (x^, points in the longitudinal direction and
y^

points

radially outward) ; the z
^

axis is oriented normal to the track plane



Figure A.l Wheelset and Track Coordinate Systems

A-
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"H" "H" „ "t*’ "T" "1"

"I" Inertial ”T" Track

”H" Horizontal
"l" Yaws with Wheelset

"l"
"
2
" 2” "w”

"2” Yaws and Rolls with Uheelset
'V' Uheelset

(i.e., yaws, rolls, and

pitches with wheelset)

Figure A. 2 Definition of Wheelset and Track Coordinate System
Orientations (Rotations Only)

[The following notation is used: sa = sin(a) , ca = cos(a)]
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corresponding transformation relations. The transformation relation for

multiple rotations is obtained by matrix multiplication. For instance,

the relation between the wheelset and track systems is:

where the coordinate transformation matrix

multiplication as follows:

(A-l)

is found from matrix

[C
W/2^

[C
2/1 ] ^l/T-1

(A-2)

Assuming small yaw, roll, and pitch angles, this coordinate transfor

mation matrix is:

w

^°W/T^ W

0 -<i>

W

-6 .

W

rW
(A-3)

Finally, an important simplification occurs since the transforma-

tion matrices are orthogonal. As a result, matrix inversion is equiva-

lent to the simpler transpose operation. Thus, the inverse relation:



is easily obtained since:

*-
C
T/W-*

~
^°W/T^

-1 t
(A-5)

(where superscript t implies transpose)

.

In this Appendix, equations are developed to describe the dynamic

behavior of a wheelset traversing right-handed curved track. For a

wheelset moving along right-handed curved track, as shown in Figure A.l,

positive lateral excursions, y^, are associated with displacements

toward the left rail (i.e., the outer or high rail). Thiis, as the wheel-

set displaces laterally in the positive sense, flange contact occurs at

the left wheel.

A. 3 Acceleration of Wheelset Center of Mass

^ The inertial acceleration of the center of mass of the wheelset,

I_W
a , is

:

I W
a

I *T W*/0_+ — - T
OJ x r

!_T I_T _W*/0_ I_T TjW*/0
+

oo x ( (i) x r ; + 2 gj x r (A- 6)

1— Twhere a is the inertial acceleration of point 0 (the origin of the
IT I*T

T

"T" system), (u and oj are the angular velocity and angular acceleration.

respectively, of the "T" system relative to the "I" system, r is



the position vector from 0 to W (the center of mass of the wheelset
T_LW*/°T

T«W*70t
"W") , and r and r are the first and second derivatives,

respectively, taken in the "T" system of the position vector from 0^

k
to W . Assuming small superelevation angle, the inertial acceleration

of CL is:
T

I „2 „ „2T • /s V ^ ’* V ^
a = Vi — j + (a<{> + —-— <j)__)k_

T R J T rSE R YSE T
(A- 7)

In equation (A-7), a represents half the rail gage. The angular

velocity of the "T
m system with respect to the "I" system is:

I T
cu =

^SE
1
!

~ R ^SE^T ~ R
k
T

*

The displacement of W from 0m
T

is:

*
T = Vt + yWJ?

T
+ (Z

W
+ r

o
)k

T

(A- 8)

(A-9)

where x^, y^, and represent small longitudinal, lateral, and vertical

displacements, respectively, of the wheelset center of mass. Sub-

stituting equations (A-7) - (A-9) into (A-6) yields the inertial ac-

celeration of the center of mass of the wheelset:

*
I_W
a [*w

+ VL tyw
'
VsE

+ [Z
W
+
^SE

+
^SE^T

A. 4 Rate of Angular Momentum of Wheelset

(A-10)

From Figure A. 2, the angular velocity of the wheelset or "W" sys-

tem relative to the "I" system is:



I_w
CD =

V ^ ^ 9 9 A • A~ \ +
^SE

1
!
+ Vl + + Vw (A-ll)

Assuming small angles, equation (A~ll) simplifies to:

I_W
W " W

WX
1
2
+ W

WY^2
+ (iJ

WZ
k
2

(A-12)

where the components are:

“WY

= K r

(A-13)

Since the "2" system is aligned with the principal directions of the

wheelset, the angular momentum of the wheelset about its center of mass

is given by:

H I
WX

aJ
WX

1
2
+ I

WY
W
WY^2

+ I
WX

Ui
WZ

k
2

(A-14)

where and 1^ are the roll and pitch principal mass moments of in-

ertia of the wheelset, respectively . In equation (A-14), the yaw and

roll moments of inertia are assumed identical due to symmetry.

The time rate of change of angular momentum is expressed by:

I^W/W* 2^W/W* I_2 JW/W*
H = H + w x'H (A-15)

IjlV/W* 2^W/W*
where H and E are the first derivatives of the angular moraen-

A-9



I—

2

turn in the "I" and "2" systems, respectively, and where co is the

angular velocity of the "2" system relative to the "I" system. Since

the "2" coordinate system does not spin (pitch) with the wheelset, its

angular velocity with respect to the "I” system is:

1—2 ~ ~
co = a} i + oj k

WX 2 WZ 2
(A-16)

where cu^ and are defined in equation (A-13) . Substituting equations

(A-13), (A-14) , and (A-16) into (A-15) and neglecting smaller order

terms gives the inertial time rate of change of angular momentum:

I*W/W

^"Src^SE
+ V ” I

WY
9W^W “ R

) ^ 1
2

+ ^WyV^

+ -
-T-

- vHr» + Vw<*SE + V iC2' (A-17)

A. 5 Wheelset Forces and Moments

As a wheelset negotiates a curve, partial slip or creepage occurs

at the wheel/rail contact patches. Due to normal loads acting on the

slipping wheelset, friction-type forces known as creep forces are

generated. The creep forces depend upon the amounts of pure-roll and

pure-slip at each contact patch. In addition to creep forces, normal

(or reaction) forces act at each contact patch to equilibrate wheelset

loads

.

Other external forces and moments acting on the wheelset are:

A- 10



•Body forces including wheelset weight and other loads
carried by the wheelset from the truck, carbody above.

•Suspension forces and moments which depend upon the
truck configuration (e.g., conventional transit,
radial, etc.)

•Thrust forces and traction (driving/braking) moments
which depend upon the truck type (e.g., powered truck)

In the following sections, normal forces and creep forces/moments

are discussed.

A. 5.1 Normal Forces

Normal forces act at each wheel/rail contact patch. The left and

right normal forces, F and F , respectively, are shown in Figure A.

3

NL NR

for a wheelset in single-point contact. Also shown in Figure A. 3 are

the left and right contact angles (5 ,6 ), the left and right rolling
L R

radii (r_,r ), and the wheelset roll angle relative to the track plane
L R

CV
Each normal force acts perpendicular to the contact patch plane

and can be resolved into lateral and vertical components in the track

plane. For single-point wheel/ rail contact at the left and right

wheels, the resolved normal force components are:

‘NYL

'NZL

‘NYR

‘NZR

"F
NL

Sin(5
L
+ V

F
NL

C0S(6
L
+ V

F
NR

31n(,5
R “ V

f
kr

cos(6
r - V

(A-18)

A- 11



rear VIEW

Left Contact

Figure A. 3 Wheel/Rail Geometry and Normal Forces Assuming
Single-Point Contact
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where f
nyl*

f
nyr

left, right normal force in lateral "track"
direction

'NZL* NZR
left, right normal force in vertical "track"
direction

The sum of the lateral components of the normal forces is sometimes re-

ferred to as the "gravitational stiffness force".

A. 5. 2 Creep Forces and Moments

In general, rolling/sliding contact theories predict longitudinal

and lateral components of creep force in the plane of the contact patch

and a creep moment normal to the patch. Contact patch coordinate sys-

tems as well as the transformation relations between the contact patch

and track axes are defined in Figure A. 4. The creep forces and moments

at the left, right contact patches are:

A A

CL
F i +
CPXL CL

F i
CPYLJ CL

33

CR
F i +
CPXR CR

F jCPYRJ CR
(A-i9)

**CL
= M

CPZl5cL

« A

CR CPZR CR

where F
CPXL* CPXR

left, right creep force in longitudinal contact

patch direction

f
cpyl*

f
cpyr

left, right creep force in lateral contact patch

direction

m
cpzl*

m
cpzr

left, right creep moment normal to contact patch

and where i , j , k^ and i
CR , j CR , k

QR
are unit vectors along the left

and right contact patch coordinate systems, respectively.
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($.+)
k w

A N
iCL

1 0 0
r

^CR
1 0 0

^CL >
0 C (<$

T
-M> )

L W
3 (6. +(P )

L w < >= * j CR
- 0 c(<5 -<t> )

R w *<w <
JT

*CL
\
CL
J

0 -3(6
L
+tw ) c(W 5.

k

l
CRJ

0 s(6 )
R w '<VV £

I

Figure A. 4 Contact Patch Coordinate Systems
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Performing the coordinate transformations gives the creep forces

and moments resolved in the track system as follows:

Left Contact Patch:

F
CXL

= F
CPXL

F
CYL

= f
cpyl

cos(5
l
+ V

f
czl

= F
CPYL

Sln(5
L
+ V

m
cxl

- 0

m
cyl

s •M
CPZL

Sln(<5
L
+ V

m
czl

- m
cpzl

c03(5
l
+ V

Right Contact Patch:

f
cxr

F
CPXR

F
CYR

f
cpyr

c0s ^ 5r " V
f
czr

= "F
CPYR

Sin(6
R “ V

m
cxr

= 0

m
cyr

= M
CPZR

Sin(6
R ” V

m
czr

= m
cpzr

cos(5
r - V

A.

5

.2.1 Heuristic Creep

(A-20)

(A-21)

#
A heuristic nonlinear creep force model is adopted in this analy-

sis. The creep forces and moments are initially using Kalker’s linear

theory [16]. At each wheel/rail interface, the longitudinal and

A- 15



lateral contact patch components of creep force are:

F
CPX

” f
33^x

F
CPY

= "f
llS

" f
12^sp

(A-22)

and the spin creep moment acting normal to the contact patch is:

M
CPZ

f
12^y

" f
22^sp

(A-23)

where f^, f^» ^22* anc* F
33

are t *16 ^atera^-» lateral/spin, spin, and

longitudinal creep coefficients, respectively, and £ , £ , and E,

x y sp

are the longitudinal, lateral, and spin contact patch creepages,

respectively. The creepages are the relative wheel/rail velocities

at the contact patch normalized by the nominal forward velocity. They

are derived in the following section (A. 5. 2. 2).

The creep coefficients f^, ^22* ^33 are ^unct ^ons °f

the wheel/ rail geometry, material properties, and normal load. They

are computed according to Kalker's linear theory [16], which assumes

that the shape and dimensions of the contact area (as well as the

distribution of the normal stress) are given by the Hertz solution

for two elastic bodies in contact. In this solution, the contact

patch is elliptical. The creep coefficients are then typically

reduced by 50% to account for discrepancies between field and

laboratory test data due to contaminated rail conditions in the field.

The creep coefficients depend on the normal load, F , in the
N

following way:

A- 16



(A- 24)

In equation (A-24) , £ are nominal creep coefficients computed for the

A
nominal normal load F„; f. . are creep coefficients for normal load F .

N ij N

The magnitude of the resultant creep force cannot exceed the

amount of available adhesion, yF^, at the wheel/rail contact interface.

Accordingly, the resultant creep force is saturated using a modified

Vermeulen-Johnson model [8 ] which includes the effect of spin creepage.

A saturation coefficient, e, is calculated by:

£

fts - fe
2
+ -£ ] . . . For 3

For 8 > 3

(A-25)

where 8 is the normalized unlimited resultant creep force:
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s (A-26)
UF / ^F

CPX^
+ (^CPY )

N

The saturated contact patch creep forces and moment are then:

1

CPX
eF f

CPX

CPY
eF'

CPY

CPZ
£M ?

CPZ

(A-27)

These equations predict a resultant creep force which agrees with

linear Kalker Theory for small creepages and which saturates to the

adhesion limit for larger creepages, as shown in Figure A. 5.

A. 5. 2. 2 Derivation of Creepages for Dynamic Curving

The creepages are the relative velocities of the wheel and rail

at the contact patch normalized with respect to the nominal forward

velocity. The longitudinal and lateral components of creepage at the

left contact patch, and respectively, are:

_
1
_

V

_1_

V
-°CL

( v
rel

A

^ CL^

(A- 28)

_ ql
where V is the relative wheel/rail velocity at the left contact

patch
, i.e., the velocity of 0 on the wheel with respect to the rail.

*°CL
is the origin of the left contact patch coordinate system.
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Resultant
Creep Force

Figure A. 5 Contact Patch Creep Force vs. Creepage

Relation
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For small wheelset roll and yaw angles,

5
rel

= l\ + V(1 + -
R
-> ' r

L
§
U

' aV*T

+
^ yw

+ rL^W ~W ~ yrail
L
^T

+ [ *w
+ a

*w
" ^Vw^t *

(A-29)

In equation (A-29), y^^^ is the left rail lateral velocity. Also,

A is the longitudinal displacement of the contact patch from under the
Al»

•Ip

wheelset centerline due to yaw. For a positive wheelset yaw angle, the

left contact patch displaces forward a distance A and the right con-
ALt

tact patch displaces backward a distance A^, as shown in Figure A. 6.

Transforming equation (A-29) to contact patch coordinates and assuming

no relative velocity normal to the contact patch implies the following

A
constraint relation obtained by setting the coefficient of to zero.

Z
W
+ a

*u
-
“Vu IyW

+ rL% *W - yrail
]Can(6

L
+V <A-30)

Li

Using this constraint in equation (A-29) and evaluating equation (A-28)

results in the following expressions for the longitudinal and lateral

creepages at the left contact patch* and respectively:

5xl
= + ni +

-S->
- r

t
s
w - a*„]

SYL
= “T[yw

+ rL% 'W • yrail,
+ V

L

*
In [ 28] the longitudinal shift of the contact patch, A^ , was derived
for steady-state conditions as: A = r ik tan(<5 + A).

All Li W Lt W
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PLAN
VIEW:

Left Right

Figure A. 6 Longitudinal Displacement of Contact Points

Due to Wheelset Yaw
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The spin creepage at the left contact patch, is:

’SPL V
(aJ

rel
ka } (A-32)

where co . is the relative wheel/ rail angular velocity given by:
rel

“rel
= Vl + V 2

+ % -
~r>£

2
(A-33)

The spin creepage is obtained by transforming equation (A-33) to left

contact patch coordinates, evaluating equation (A-32), and assuming

small wheelset angles.

SSPL
= —I>V ln(d

L
+ V + % ' — + yycos(6

L + yi (A-34)

A similar development results in expressions for the creepages

at the right contact patch:

^XR
= T[X

M
+ V(1

R~^
“ r

R®W
+

^YR
* + r

R (
*W - W'^rail )/cos( 6R-V /

(A_35)
R

CSPR
=
“v"[9w

sln(VV + (i'T"*»V“s(W
A.5.2.3 Definition of Contact Patch Work

The work expended at the wheel/ rail contact patches has been pro

posed as a curving performance index [ 13]

.

The contact patch work is

related to wheel and track wear.
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Contact patch work is defined as the dot product of the resultant

creep force and creepage vectors, as follows:

W = F
CPX^X

+ F
CPY^Y

+ M
CP^SP

(A-36)

The work index, W, represents the work expended at the contact patch per

unit distance along the track. As such, W has units of work per dis-

tance or force.

If creepage occurs, work is expended at the contact patch. This is

verified by substituting equations (A-22) , (A-23), and (A-27) into

equation (A-36) yielding:

W ^ f33^X
+ f

ll^Y
+ f

22^SP-1
(A-37

)

Since the creep coefficients, f^, f^t and ^33* anc* saturat^on

coefficient, £, are positive numbers, the work index is negative.

Thus, work is always expended at the contact patch.

The work, W, is related to the power dissipated at the contact

patch as follows:

P = VW (A-38)

where V is the vehicle speed (assumed constant) . Equation (A-38)

represents the power dissipated by friction.

A. 6 Wheelset Equations of Motion

The wheelset equations of motion are derived by direct application

of Newtonian mechanics prescribed by the principles of linear and

angular momentum. The principle of linear momentum states that the net
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external force acting on the wheelset is equal to the product of the

mass of the wheelset, m
, and the inertial acceleration of the center of

I_W*
W

mass, a. Thus,

*
I_W

F = a (A-39)

where F represents the sum of all external forces acting on the wheel-

set, including creep and normal forces. The principle of angular

momentum states that the net external moment acting about the center

of mass of the wheelset is equal to the time rate of change of angular

momentum about the center of mass.

W* I_^W/W*

M = H (A-40)
*

_W
where M is the sum of all external moments acting about the center of

mass of the wheelset. Equations (A-39) and (A-40) represent six

scalar differential equations of motion for the wheelset.

A simple model of the track is adopted in which each rail is as-

sumed to have lateral freedom only. In this model, overturning motion

of the rails is neglected. Figure A. 7 shows the mass-spring-viscous

damper arrangement used to model each rail. The equation of motion

for each rail is:

-F
y

my +
r rail

c y ..
r rail

k y
r rail

(A-41)

where F is the net lateral wheel force composed of creep and normal
y

forces; m is the effective lateral rail mass, c is the effective
r r

lateral rail damping, k^ is the effective lateral rail stiffness, and

y ^ is the lateral rail displacement. Equation (A-38) represents
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REAS VIEW:

Figure A. 7 Lateral Track Model



Che scalar differential equations of motion for the left and right rails.

A. 6.1 Single-Point Contact

This section develops the dynamic curving equations of motion of

a wheelset in single-point contact at the left and right wheels. A

free-body diagram is shown in Figure A. 8. From equation (A-39) , the

vector force equation of motion is:

]1_W

F + F + F + F + F + F ,
= m, a

CL CR NL NR susp axle W
W

(A-42)

where F^T , F„_ are creep forces and F„TT , F„_ are normal forces at the
CL CR NL NR

left, right contact points, respectively, F
gu

are suspension forces,
1 W

^axle
are ax^e f° rces» JDy = W^/g is wheelset mass, and a is the

inertial acceleration of the center of mass of the wheelset given by

equation (A-10) . The axle forces consist of longitudinal thrust, F^,

and wheelset weight, W^, as follows:

axle
F i - W k,

T
t T w H

(A-43)

Assuming small angles, equation (A-42) is equivalent to the following

three scalar equations of motion resolved along track coordinates.

Wheelset Longitudinal Equation

W
w

(x. + V) - F„__ + F__ + F^ ' CXL CXR + Fsusp L
t

*W

Wheelset Lateral Equation

(A-44)

W
w

(y - r 4 ) = F +F +F +F +F
g

VyW o^SE' CYL CYR NYL NYR susp

+ V*d “ V
'W (A-45)
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Figure A. 8 Free-Body Diagram of Wheelset in Single-Point Contact
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Wheelset Vertical Equation

W.w

g
+ a<

*
>

s E
J F

CZL
+ F

CZR
+ F

NZL
+ r

NZR
+ F

susp
‘ W

w
(A~46)

Z
W

In equation (A-45) , represents the cant deficient, given by

,2

4 >

V
- <f>

Rg ySE
(A-47)

The cant deficiency is an angular measure of the lateral unbalance be-

tween centrifugal and gravitational forces.

The vector moment equation of motion, equation (A-40) , is defined

by:

R_ x (F + FXTT ) + R„ x (F + ¥) + M
L v

CL NL R v CR NR CL

I-W/W
+ M + M + M = H

CR susPy axle
(A-48)

where R^, R^ are displacement vectors from the wheelset center of mass

to the left, right contact points, M , M are the creep moments at
CL CR

the left, right contact points, M are suspension moments, M
1susp T T rT / TT* axle

W i-w/w’

are axle moments (e.g., drive/brake torque, T^^) an<* H

inertial time rate of change of angular momentum, specified by equation

(A-17) . The displacement vectors, R^ and R^ are given by

\ = -U a-Van<VVlVh + aJ
T

' r
L
£
T

(A-49)

S =
tl a-v“<VVfVS ' aS - ri*

where small yaw and roll angles have been assumed and the longitudinal
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displacements of the contact points with wheelset yaw have been taken

into account. Substituting expressions (A-49) into equation (A-48)

,

expanding, and neglecting smaller order terms gives the following

three scalar equations resolved along ”2" system coordinates.

Wheelset Roll Equation

+ M (A-50)

Wheelset Spin Equation

+ T
d

(A-51)

Wheelset Yaw Equation

• «
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(A-52)

(a r
R
tan(0

R V )(F
CYR

+ F
NYR^

+ M
CZL

+ M
CZR

+M
susp VM

CYL
+ M

CYR )

Z
W

In these equations, the longitudinal creep moments, M and M ,CXL CXR

have been set to zero as was shown in equations (A-20) and (A-21)

.

Also, relations (A-18) have been used to simplify the wheelset spin

equation, equation (A-51). As expected, normal forces do not (ex-

plicitly) appear in this equation.

The dynamics of the rails are approximated using the lateral

rail model shown in Figure A. 7. The equations of motion of the left

and right rails are determined by equation (A-41)

.

Left Rail Lateral Equation

my ..
r rail.

+ c yrail.
ky . -|

r rail.
= -F,

NYL
- F

CYL
(A-53)

Right Rail Lateral Equation

V'rail
+ C

r
7rail

+ k
r
7rail_

"F
NYR

" F
CYR

R R R

(A-54)

Equations (A-44) - (A-47) and (A-50) - (A-52) represent six wheel-

set equations of motion; equations (A-53) and (A-54) represent two

rail equations of motion. This system of 8 equations describes the

dynamic behavior of a wheelset in single-point contact as it

negotiates laterally flexible, curved track. Mathematically, these

equations are coupled, nonlinear, scalar, differential equations.

They can be solved for the time histories of the following 8 indepen-
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dent variables: This7W’ V F
NZL*

F
NZR» yrail

T
*

7rail
*

L R
assumes that F^_, T^, wheelset mass and inertia properties, and

suspension forces and moments are known input data. Also, V, R, and

<J>
are assumed known functions of distance along the track. For con-

3 Hi

tinuous wheel/ rail contact, the following geometry are known functions

of y„ f y > and y for a given wheel/rail profile: zrT ,
d>__,

'rail y rail W W

r , r , 6 , 6 . Thus, the wheelset vertical displacement, z , and the
L R L R W

wheelset roll angle, <p , can be written in terms of the state variables
w

yTT , y . , , and y . Similarly, the wheelset vertical velocity and
W 'raiJL rail

R
roll angle rate are functions of the wheelset and rail lateral vel-

ocities .

It is convenient to calculate the normal forces from the wheelset

vertical and roll equations. Simultaneous solution of equations

(A-46) and (A-50) gives the normal forces at the left and right wheel/

rail contact patches as follows:

(A-55)

where

v
l

* F
zf

acos(vv-r
R
sin(vvf + y°s<yv

Vr - F*jacos(6
L+<t.w

)-r
L
sin(6

L
+$M)(

- M*cos(6
L+<f>w)

and
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A
x

= 2acos(5
L
+^w

)cos(5
R

-<|)

w
)-r

R
cos(5

L
+(j)
w
)sin(5

R -<i)w)

-r
L
Sin(W COS(V<t>U )

In the expressions for V and V , F is an equivalent vertical force and
.Li K Z

is an equivalent roll moment given by:

and

F
z

“F
CZL

" F
CZR

" F
susp

+
g

(z
w

+ a
^SE^

+ W
w

z
w

% a(F
CZR

" F
CZL

) ~ r
L
(F
CYL " VcXL )

-r (F - tii F ) - ii (M + M ) - M
R

v CYR CXRy V CYL CYR' susp
*W

+IWX^W
+

^SE^
" I

WY®W
(

'^W
” R

^

The noxnnal forces, F and F , are resolved into lateral and vertical
NL 11 R

components according to equations (A-18)

.

A. 6. 2 Two-Point Contact

The previous development is appropriate for a wheelset which main-

tains single-point wheel/rail contact at both wheels for all lateral

displacements . This continuous single-point contact approximation is

appropriate for some wheel/rail profiles, particularly many European

profiles. As the wheelset displaces laterally, the point of contact

at the outer wheel shifts smoothly from the tread to the flange, while

the inner wheel maintains tread contact. For other profiles with steep

flanges, such as many U.S. wheel/rail profiles, two points of contact

can develop at the flanging wheel. As before, single-point tread con-

tact occurs at both the inner and outer wheels for a net wheelset ex-
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cursion less than the flange clearance. Two-point contact occurs at

the flanging wheel and single-point contact occurs at the inner wheel

for a wheelset displacement (relative to the flanging wheel rail)

equal to the flange clearance. Single-point flange contact occurs at

the flanging wheel for net excursions greater than the flange clearance.

This represents a dangerous situation conducive to derailment.

For a wheelset negotiating a right-handed curved track, the left

wheel represents the outer or flanging wheel. Figure A. 9 shows the con-

tact condition at the left wheel as the wheelset displaces laterally.

Single-point tread contact (Figure A. 9a) and single-point flange con-

tact (Figure A. 9c) occur for net excursions less than and greater than

the flange clearance, respectively. Two-point contact occurs for a

wheelset excursion (with respect to the left rail) equal to the flange

clearance. Two-point contact is depicted in Figure A. 9b where the

rail head is shown to contact simultaneously both the tread and flange

of the left wheel.

k
For a wheelset in two-point contact , the displacement relative to

the left rail is fixed at the flange clearance, y ^
, or mathematically,

yW
- yrail

L
' y£c

(A-56)

Equation (A-56) represents a constraint relation which can be used to

specify the contact geometry (rolling radius, contact angle) of the

The terminology assumes that the two points of contact occur at the

flanging wheel. "A wheelset in two-point contact" actually has three

points of wheel/ rail contact, two at the flanging or outer wheel and

one at the inner wheel

.
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Contact Contact

Figure A. 9 Left Wheel/Rail Contact
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tread and flange contact points of the left wheel. Differentiation

of equation (A-56) gives the relation between the wheelset and left

rail lateral velocities and accelerations:

=
^rai^

yW
=

^rai^

(A-57)

Figure A. 10 shows the wheel/rail forces acting on a wheelset in

two-point contact. The equations of motion describing a wheelset in

two-point contact at the left wheel are similar to the equations derived

for a wheelset in single-point contact, with new terms to account for

the additional contact patch. The expressions derived for single-

point contact at the left, such as the. normal force, the creep force

and moment, and the creepages at the left, are correct for two-point

contact. Now, however, these expressions apply to a left tread and

left flange contact patch when the appropriate contact geometry is

used. The notation is subscripts LT and LF for left tread and left

flange contact patch, respectively, in place of subscript L (for

left contact patch) of the single-point contact derivation.

Assuming small yaw and roll angles, the equations of motion of a

wheelset in two-point contact at the left wheel are given below.

Wheelset Longitudinal Equation

W
w

+ V') * F + F +F +F +F; CXLT CXLF CXR susp
+

t

*W

(A-58)

A-35



REAR VIEW

Rail Forces

Figure A.10 Wheel and Rail Forces for Two-Point Contact
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Wheelset Lateral Equation

W
w

(v - rj ) = F + + F__,_ + F.

g
w W o SE CYLT CYLF CYR NYLT

+ F
NYLF

+ F
NYR

+ F
susp

+ V*d " V
yw

(A-59)

Wheelset Vertical Equation

W
w

( 2L+a6 )=F + F +F + FySE y CZLT CZLF CZR NZLT

+ F +F +F -W
NZLF NZR susp w

Z
W

(A-60)

Wheelset Roll Equation

*WX^W
+

'^SE^
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+ r
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a(F
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+ r
R
(F
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+ F
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+ M +l|>(M + M +M )
susp V CYLT CYLF CYR ;

*W

(A-61)

Wheelset Spin Equation

^^W = “ r
LT^

F
CXLT

+
^W^CYLT

+ F
CZLT

tan (6
LT

+
*V ^

r
LF

[F
CXLF

+
^W^CYLF

+ F
CZLF

tan (<S
LF

+ V ^

- r fF + ili -If - F tan(5 — 6 )[]
R l CXR ^W' CYR CZR ^ R yw' »

J

+ M +M +M + M
CYLT CYLF CYR susp

'W

+
^W^CZLT

+ M
CZLF

+ M
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+ T
d

(A-62)
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Wheelset Yaw Equation

IWX^X ” R R
^ IWY®W^W
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^SE^
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*W

(A-63)

Left Rail Lateral Equation

m v +cv + k. v = —F — F — F — F
r
yrail

L
r
y rail

L
r
yrail

L
NYLT NYLF CYLT CYLF

(A-64)

Right Rail Lateral Equation

m
r
7rail_

+ C
r
7rail_

+ k
r
7 rail_

"F
NYR

" F
CYR

R R R

(A-65)

Equations (A-58) - (A-65) represent 8 coupled, nonlinear, differential

equations of motion. The equations describe the dynamic behavior of a

wheelset in two-point contact at the left wheel as it negotiates lat-

erally flexible, right-handed curved track. The equations can be

solved for the time histories of the following 8 independent variables:

V V V V F
NZLT’ W’ W yrail

• The left rail laCeral diS_
R

placement, y ^ » is a known function of the wheelset lateral excur-

i*
• •

sion, y , according to equation (A-56) . Similarly, Y
ra;

j_i and yra^
L L

are given by equations (A-57)

.
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The normal forces are determined by solving simultaneously the

wheelset vertical and roll equations, the left rail lateral equation,

and the two-point contact constraint relations. By manipulation of

equations (A-60) , (A-61) , and (A-64) with (A-56) and (A-57) , the normal

forces at the left tread, left flange, and right wheel/rail contact

patches, F^
LT » F^, and F^

R , respectively, are:

V
LT

'NLT

LF
’NLF

V
2R

‘NR

(A-66)
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In Che expressions for 5 , 6 , and 6 , the equivalent lateral force,
Li Lr ZK

^ ^
vertical force, and roll moment, F^, F^, and respectively, are:
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The normal forces, F , F , and F , given by equations (A-66),
INL»± jNi-j-c IN lx

are resolved into lateral and vertical components by relations similar

to equations (A-18) but modified to account for a tread and flange con-
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tact patch at the left.

This development assumes that two-point contact occurs at the

outer or left wheel. However, two-point contact can occur at the

inner or right wheel during violent curve entry and hunting conditions

and during negotiation of reverse curves. The derivation of the

equations of motion of a wheelset in two-point contact at the right

wheel follows directly from the above analysis, and is not presented

here.

A. 7 Wheelset Numerical Methods

The equations of motion developed in Section A. 6 describe the

dynamic behavior of a wheelset negotiating flexible, curved track

of variable geometry. In this section, a general method for wheelset

analysis is presented which accounts for both single-point and

two-point wheel/rail contact. In addition, the numerical technique

to solve the wheelset equations is discussed.

Due to suspension forces and moments, the wheelset equations of

motion are coupled to the vehicle equations of motion. The details

of the suspension forces and moments, and the vehicle equations are

presented in Appendix B.

In a dynamic curving analysis the wheelset lateral dynamics are

extremely important since they determine whether or not flanging

occurs. The lateral dynamics are virtually decoupled from the longi-

tudinal dynamics. As a result, wheelset longitudinal dynamics are

• ••

neglected. Thus, by assumption, x^, x^, and x^ are zero. As an
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additional benefit, this assumption eliminates a degree of freedom (for

each wheelset), and reduces computer simulation time.

It is also assumed that the effective lateral mass of the rail,

m , is zero. This is justified since the rail lateral stiffness and
r

viscous damping forces dominate. Further, it is assumed that the

k
influence of lateral rail velocity on lateral creepage is negligible.

British Rail [ 8] has suggested that this approximation is reasonable

since the lateral creep force is generally saturated during flange

contact

.

A flowchart of a general method for wheelset analysis is shown

in Figure A. 11. At each time step, the single-point contact wheelset

equations are solved and the solution is checked for consistency. The

single-point contact solution is consistent if (1) a single-point con-

tact wheel-rail profile is used, or (2) a two-point contact profile

is used but the net excursion at the left and right wheels is not

equal to the flange clearance. In the latter case, single-point tread

contact occurs if the net wheelset excursion is less than the flange

clearance; single-point flange contact occurs if the net excursion

is greater than the flange clearance. If the solution is inconsistent,

the wheelset equations appropriate for two-point contact at the left or

right wheel are solved (depending whether the net excursion equals

the flange clearance at the left or right wheel) . By necessity, the

two-point contact solution must be consistent. This implies that

These assumptions, i.e., neglecting the rail mass and the effect of

rail lateral velocity on lateral creepage, simplify the computational

aspects of the dynamic curving analysis.

A-42



Initial Conditions (or
Previous Tint Stop Solution)

Two-Point Contact Slnfla-Point Contact Two-Point Contact

at llt^c Solution Solution at Late Solution

Figure A. 11 Wheelset Dynamic Curving Analysis at One
Time-Step
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(1) the net wheelset excursion is equal to the flange clearance, and

(2) two points of contact actually exist (i.e., positive normal forces

act at both contact patches of the flanging wheel)

.

The single-point and two-point contact wheelset equations are

solved via a fourth order Runge-Kutta integration algorithm. The

method requires that the equations of motion are transformed to a

system of first-order differential equations.

A. 7.1 Single-Point Contact

For a wheelset in single-point contact, the solution approach

is to solve the wheelset lateral, yaw, and spin equations and the left

and right rail lateral equations for the following states:

X.
1

X
3

0
,W

X4 y,
(A-67)

W

X.
D w

The seven first order differential equations of motion are:

X.
1

Xk

4

X,
2

X
'5
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Wheelset Spin [Equation (A-51)

]

f(X »X , ..., X_ , F
, M )

-J 12 7 susp ’ suspITw w

Wheelset Lateral [Equation (A-45)]

X, = f(X
n , X ,

X

7 , F , M )4 12 7 susp * suspITw w

Wheelset Yaw [Equation (A-52)

]

X- f (X_ , X_, • • • ) X_ y F
, M )

5 12 7 susp r7 susprTw w

Right Rail Lateral [Equation (A-54)

]

X. = f(X. , X„, .... X_, F
, M )6 1* 2 7 SUSPW

susp
w

Left Rail Lateral [Equation (A—53)

]

(A-68)

X, = f (X- , X-i . . . , X_ , F
^

» “2* * —7' susp..' susp
w w

The normal forces at the left and right contact patches, F and Fm _,NL NR

are calculated from the wheelset vertical and roll equations according

to equations (A-55) . In these equations, the normal forces are given

as a function of the creep forces and moments. However, the creep

forces and moments depend on the normal forces. Thus, at each time

step an iterative scheme is required to solve for the wheel/rail

forces and moments, as shown in Figure A. 12. In equations (A-55),

the normal forces are also a function of the suspension forces and

moments. The wheelset suspension force, F , and moment, M ,

susp
w

susp
w

couple equations (A-68) to the vehicle equations of motion and are

presented in Appendix B.

A-45



States;
Suspension Forces and Moments

Wheel/Rail Forces (Normal and Creep) ;

Contact Patch Work

Figure A. 12 Wheel/Rail Force Calculation at
One Time-Step
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A. 7.

2

Two-Point Contact

For a wheelset in two—point contact at the left wheel, states

and are dependent due to the contact constraint relation (A-56)

.

The left rail lateral displacement is a known function of the wheelset

lateral displacement. In this case, six first order differential

equations are written:

Wheelset Spin [Equation (A-62)

]

x
3

- f(xr x
2

, X,, F , M )
6 susp

w
susp

w

Wheelset Lateral [Equation (A-59)]

x
4

= f(xr x
2

. X,, F , M )6 susp
w

SUSPW

Wheelset Yaw [Equation (A-63)]

F
susp

W
M
susp

W

Right Rail Lateral [Equation (A-65)

]

f(x
1

, x
2

, • • •

»

F , M )susp
w

susp
w

(A-69)

The wheelset vertical and roll equations and the left rail lateral

equation are used to calculate the normal force at the left tread,

left flange, and right contact patch, F^^, F^^, and F^
R , respectively,

according to equations (A-65). At each time step, an iterative scheme

similar to the method shown in Figure A. 12 is used. The left rail
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lateral displacement, velocity, and acceleration are specified by

equations (A-56) and (A-57) . Equations (A-69) are coupled to the

vehicle equations of motion by the wheelset suspension force and moment,

and M , respectively. These are discussed in Appendix B.
susp

w
susp

w

Equations (A-68) are appropriate for a wheelset in single-point

contact at the left and right wheels; equations (A-69) are appropriate

for a wheelset in two-point contact at the left wheel (and single-point

contact at the right wheel) . Following a parallel derivation, equations

of motion similar to equations (A-69) can be written for a wheelset in

two-point contact at the right wheel. In such a case, states X^ and

X are dependent.
0

Equations (A-68), (A-69), and the equations for a wheelset in

two-point contact at the right wheel represent sets of coupled, scalar,

first order differential equations which characterize the behavior of

a wheelset as it traverses flexible, curved track. These governing

equations represent a system of 7 states: 5 states for the wheelset

and 2 states for the rails. The wheelset has 2 states (i.e., 1 degree

of freedom) to describe its lateral and yaw motions, as well as a state

to represent its spin speed. Each rail has a state to describe its

lateral deflection. When two-point contact occurs, the state of the

rail at the flanging wheel is known due to a constraint relation which

exists between the wheelset and rail lateral displacements.
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APPENDIX B

DYNAMIC CURVING EQUATIONS OF MOTION OF A RAIL VEHICLE MODEL

B.l Introduction

In this Appendix, the dynamic curving equations of motion of a

rail vehicle model are developed. The vehicle model is shown schematical-

ly in Figure B.l. The vehicle model incorporates the nonlinear wheelset

model described in Appendix A. In addition, it includes a generic

truck model that can represent arbitrary interconnections between the

wheelsets, truck frames, bolsters, and carbody. Thus, conventional,

self-steered radial, and forced-steered radial truck configurations

can be modelled. In addition to the wheel/rail nonlinearities of the

wheelset model, nonlinear suspension effects are included in the vehicle

model.

B.2 Coordinate Systems

The front and rear truck frames, the front and rear bolsters,

and the carbody are assumed to be rigid bodies. For each rigid body,

a "body-fixed" coordinate system is established, consisting of mutually-

perpendicular, right-handed axes x, y, z with corresponding unit vectors

i, j, k. The x, y, and z axes denote the longitudinal, lateral, and

vertical directions, respectively. The axes of each coordinate system

are aligned with the principal directions (i.e., in the directions of

the principal mass moments of inertia) and the origin of each system

is located at the center of mass.

Figure B.2 shows the following "body-fixed" coordinate systems:

"FI" and "F2" for the front and rear truck frames, respectively; "Bl"
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Rear View

Curving to Right

Carbody

Bolster

Truck Frame

Figure B.l Rail Vehicle Model During Curving,

Rear View
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Figure B.2 Rail Vehicle Model Coordinate Systems
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and MB2" for the front and rear bolsters, respectively; and "C" for the

carbody. The centers of mass are denoted with asterisks. Figure B.2

also shows the track coordinate system, "T". This system moves along

the superelevated track centerline with tangential speed V, as described

in Appendix A (Section A. 2).

In addition to "body-fixed" coordinate systems, intermediate co-

ordinate systems are used to define the orientation of each rigid body.

Table B.l summarizes the coordinate systems used in the analysis. (For

simplicity, the table does not list separate coordinate systems for the

front and rear trucks and bolsters. System "F" represents "FI" for the

front truck and "F2" for the rear truck, etc.) Coordinate systems "3"

and "4" are intermediate systems used to define the orientation of the

truck frame and carbody, respectively.

TABLE B.l COORDINATE SYSTEMS

T Track

3 "Intermediate" Truck Frame
(Yaws with Truck Frame)

F Truck Frame
(Yaws and Rolls with Truck Frame)

B Bolster
(Yaws with Bolster)

4 "Intermediate" Carbody
(Yaws with Carbody)

C Carbody
(Yaws and Rolls with Carbody)

Figures B.3, B.4, and B.5 show the coordinate system rotations

and the corresponding transformation relations used to define the
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7Tj

"T" Track

"3" Yaws vich Truck

"F" Truck Frame

(Yaws and Rolls
Relative to Track)

The following notation is used: sa » sin (a) , ca * cos(a)

Figure B.3 Definition af Truck Frame Orientation (Rotation Only)
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F" "U
If

F B

"F" Truck Frame

"B" Bolster
(Yaws with Bolster)

The following notation is used: sa « sin(a) , cct » cos(a)

Figure B.4 Definition of Bolster Orientation
(Rotation Only)
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"T" 4 "4 "C"

"T" Track

"4" Yaws with Carbody

"C" Carbodv

(Yaws and Rolls Relative

to Track)

The following notation is used: sa » sin(a) , cat - cos(a)

Figure B.5 Definition of Carbody Orientation (Rotation Only)
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orientation of the truck frame, bolster, and carbody, respectively. The

orientation of the truck frame and carbody is specified relative to the

track coordinate system by yaw and roll angles. The sequence of rota-

tions for the truck frame and carbody is yaw displacement about the z^

axis followed by roll displacement about the rotated axis. The or-

irentation of the bolster is specified relative to the truck frame by

a yaw angle about the Zp axis. It is assumed that the truck frame,

bolster, and carbody do not pitch and thus rotations about the rotated

yT
axis are neglected.

As discussed in Section A. 2, transformation relations for multiple

rotations are obtained by matrix multiplication. Performing the multi-

plication and assuming small angles gives the following relation between

the truck frame and track systems.

%

2^W1
+<
^W2^

2
(<W^W2^ (B-l)

where the truck frame roll angle is assumed to be the average of the

leading and trailing wheelset roll angles, and
<f>TT„ . (For analysis

W1 W2

of the rear truck, angles
<t>TT - and

<J>TT . correspond to
<J>TT _ and <prr , ,W1 W2 Wo W4

respectively.) Similarly, the relation between the bolster and track

systems is:
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1

“*B

0

2^W1
+<
^W2

)

2^W1
+<*W

(B-2)

since the bolster rolls with the truck frame. The transformation

relation between the carbody and track systems for small yaw and roll

angles is:

1

-*<

0

1

0

(B-3)

B.3 Acceleration of Center of Mass

The inertial acceleration of the center of mass of the truck,

*
bolster, carbody, or any rigid body Q with center of mass Q moving

along the track is defined by:

i_Q* i_P
T

t«q*/o
t

]>t _Q*/o
t

a = a + r + u) x r

I_T I_T _Q*/0_ I_T T_^Q*0

+ o)x (ajxr T
) + 2 w x r (B-4)

1 CL— Twhere a is the inertial acceleration of point 0^ given by equation

I T
(A-7),

uj is the angular velocity of the MT" system relative to the

Q*/0_

’I" system given by equation (A-8), and r is the displacement

vector from 0^ to Q .
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B.3.1 Acceleration of Truck Frame/Bolster Center of Mass

The displacement of the center of mass of the truck frame, F
,

F*/C>

relative to point 0 is r
* T

F /0m

given by:

r " VT
+ yF

j
I
+ U

F
+ r

o
+ h

tp
)k
T

(B-5)

where x_, y.., and z represent small longitudinal, lateral, and verti-
r r r

cal displacements, respectively, of the truck frame center of mass.

Substituting equation (B-5) into (B-4) and setting Q = F gives the

acceleration of the center of mass of the truck frame:

*
I F

*=1^ + V]i + [yp - (r + h )
"T

' W F x
“o *tp /YSE

V
2

V 2

R JJ
T

+ + a
*SE

+ i“ ^SE
]k

T
(B-6)

It is assumed that the only relative displacement between the

truck frame and bolster is yaw rotation. In translation, the truck

frame and bolster execute the same motions. Thus, the acceleration of

the center of mass of the bolster is given by equation (B-6) . (This

assumes that the vertical distance between the centers of mass of the

truck frame and bolster is small relative to (r + h )

.

o tp

B.3.2 Acceleration of Carbody Center of Mass

The displacement of the center of mass of the carbody, C*, from

_C*/0T
point 0^, denoted by r

, is

-C
*
/0
T -

r = x i. + y _i_ + (z

_

+ r +h +h +h )lL,
C T J CJ T C o tp ts cs T

(B-7)

where x , y , and z represent small longitudinal, lateral, and verti-
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cal carbody displacements, respectively. Substituting into equation

(B-4) with Q = C yields the acceleration of the center of mass of

the carbody:

*
I C

a * [x + V]i + [y - (r +h. +h +h )<j)

C T C o tp ts cs SE

+ [z
c
+ a 4>

SE
+

R ^SE^T (B-8)

B.4 Rate of Angular Momentum

B.4.1 Rate of Angular Momentum of Truck Frame and Bolster

The angular velocity of the truck frame, "F", in inertial space

"I" is:

I_F
ui = +

^SE
1
!
+ +

2
(<W%2 ):L

F
(B-9)

Assumin g small angles, equation (B-9) is equivalent to

IJF
w "

^FxS*
+

^FZ^F

by transformation where the components are

(B-10)

01
FX

“
^SE

+
2^W1

+
^W2^

V

^FZ ^F “ R

(B-ll)

The angular momentum of the truck frame about its center of mass is

given by
F/F

H “ I
FX

U)
FX

jT + I
FZ

aJ
FZ^F

(B-12)

where I and I are the roll and yaw principal mass moments of in—
FX FZ

ertia of the truck frame, respectively.
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The inertial time rate of change of angular momentum is expressed

by: *
F_vF/F* I_F F/F

H + oj x H
IjF/F
H (B-13)

where H and H are the time rates of change (i.e., first deriva-

tives) of the angular momentum in the "I" and "F" systems, respectively.

Substituting equations (B-10) , (B-ll) , and (B-12) into (B-13) and

neglecting smaller order terms gives the inertial time rate of change

of angular momentum of the truck frame:

By parallel arguments, the inertial time rate of change of angular

momentum of the bolster is:

where small angles have been assumed and smaller order terms have

been neglected.

B.4.2 Rate of Angular Momentum of Carbody

The angular velocity of the carbody "C" with respect to inertial

space "I" is:

+ [IFzhF--r- (B-14)

I_^B/B

H

*

(B-15)

I C

(B-16)
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In carbody coordinates, equation (B-16) is equivalent to:

(B-17)

where smaller order terms have been neglected. The inertial times rate

of change of angular momentum of the carbody is derived by following

a development similar to the derivation in Section B.4.1 for the truck

frame. The result is:

where 1^ and I^ are the roll and yaw principal mass moments of in-

ertia of the carbody, respectively. In deriving equation (B-16),

small angles have been assumed and smaller order terms have been

neglected.

B.5 Forces and Moments

This section focuses on the internal suspension forces and moments

acting on the wheelsets, trucks, bolsters, and carbody of the rail

vehicle model shown in Figure B.l. The vehicle model incorporates a

generic truck model capable of representing conventional, self-steered

radial, and several forced-steered radial truck designs.

A schematic of the generic truck model is shown in Figure B.6.

The geometric offsets, A^, Ai^* Ay^, Ay 2* represent the effects of

forced-steering linkages and are given by the following steering re-

lations.

.
*

I*C/C

+[I
czl^c

' ^/R vO-/R)bk
c

(B-18)
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Figure B.6 Generic Truck Model



Yaw Offset Relation

Aip. = Alp. = ± 2G
X

^W1
+

^W2
\ ± 2G

2
'

YW1
" yW2
2b

± 2G
3

7W1
+ yW2

yFP 2V*F " V

± 2G
5

I

V +
^W2

^f)—
2G

6

yWl
" yW2
2b

~
^F/

(' B~19)

Lateral Offset Relation

+ 2H
2
(y

F
-y

c
) + 2H

3

t
yWl

+ yW2

l
2 y

(B-20)

The G.’s in equation (B-19) are curvature steering gains and the H ’s
i i

in equation (B-20) are cant deficient steering gains. The suspension

system of the generic, truck model produces suspension forces and moments

which act on the wheelsets, truck frame, bolster, and carbody. Ex-

pressions for the suspension forces and moments due to the steering

linkages are derived in [ 1 ]

.

B.5.1 Wheelset Suspension Forces and Moments

Suspension forces and moments act on each wheelset due to primary

longitudinal and lateral suspension elements, self-steered and forced-

steered linkages, and loads carried from above. Figure B.7 shows the

lateral and vertical suspension forces, F and F and the
suspv suspz .

*

y wi wi
equivalent roll and yaw suspension moments, M and M ,

suspx . suspz .r Wl Wl
respectively, acting on wheelset i. In this analysis, the longi-

tudinal suspension force, F , is zero since the analysis
suspx^^

neglects the wheelset longitudinal degree of freedom. The spin sus-
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Figure B.7 Suspension Forces and Moments Acting on
Wheelset i

B-16



pension moment, M
sus >

is also zero since no momemts develop about the
Fywi

spin axis due to suspension components.

The lateral suspension force, F , and yaw suspension moment,
SUSp

^wi
M , acting on the leading wheelset of the front and rear trucks
suspy .

wi
are given by the expressions below.

Leading Wheelset Lateral (i = 1 Front Truck;
i = 3 Rear Truck)

G +G 2

F = [-2k - ] G + (—~_A_> J. (k +k )-(H -H_+l)
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+ [2(H1+H2
)(H1+H3+l)(k

s2+
k
s3

)]y
c
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-2Cpy- (C
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s3
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'
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+ [2(G1+G
2
-K3

4
) (Gj^j+I) Ck^+k^) ]*„

+[-2b(a1+H2
)(k

s2
+k

s3
)]y

c

+ 'b <C
s2
+2C

s3
)i^l + t

-2dpVC
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b3-

b2(C
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+[2d
2
c
px + 2C

b3
]iF <

In these equations, as well as the equations that follow, the notation

+ implies + for the front truck and - for the rear truck. Also, ywl

and represent the lateral excursions of the leading and trailing

wheelsets of the truck, respectively, and 1 denote the yaw angles

of the leading and trailing wheelsets, respectively. For analysis of the

rear truck, ywl> yw2>
and ^ correspond to yw3> y^, <Pw3>

and

respectively.

Due to the suspension arrangement, a lateral force, F
suspy , and

wi
a yaw moment, M , act on the trailing wheelsets of the front and

suspz
wi

rear trucks

.

Trailing Wheelset Lateral (i * 2 Front Truck;

i » 4 Rear Truck)

F
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The vertical suspension force, F , is equal to the load
SUSpZ

wi
carried vertically by the leading and trailing wheelsets, i.e..
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F = -[ t(W +W )+ t Wj ,suspz . 2 F B 4 C
wi

i = 1,2, 3, 4. (B-25)

The roll suspension moment, M , is due to the truck frame, bolster.
suspx

wi
and carbody weights as follows.

M = - ^-(W +W
T3)[ 4> j = +<t> - ) ] hsuspx . 2 F ByLY d 2

Ywl w2 tp
wi

T w ](h +h +h )
4 c

Y
d

r
c cs ts tp

i<Vwb )[Vt- W
7 W (y + —

7

y . ) , i
4 c ^c R 7 wi

= 1,2, 3, 4. (B-26)

In equation (B-25) and (B-26), i = 1,2 for the leading, trailing

wheelsets of the front truck, and i = 3,4 for the leading, trailing

wheelsets of the rear truck. For analysis of the rear truck, and

<£

w2
in equation (B-26) correspond to <J>^ and <t> respectively.

B.5.2 Truck Frame and Bolster Suspension Forces and Moments

In this section, expressions for the suspension forces and moments

acting on the truck frame and bolster are presented. In a conventional

rail vehicle, suspension forces and moments act due to the primary and

secondary suspension systems. In an advanced design vehicle with

steerable trucks, the steering linkages exert additional forces and

moments on the trucks and bolsters.
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The secondary suspension system acting between the truck, bolster,

and carbody is modelled as follows. The carbody is coupled to the

bolster via parallel spring/viscous damper elements in the lateral and

vertical directions and a torsional spring/viscous damper combination

in the yaw direction. The bolster is connected to the truck frame by

a torsional coulomb damper which saturates at the breakaway torque. The

damper allows yaw motion between the truck frame and bolster. In all

directions except yaw the bolster and truck frame follow identical

motions. In forced-steered vehicle designs, the steering linkages are

physically connected to the bolster.

Due to the suspension system, an equivalent lateral force and yaw

moment act at the center of mass of each truck frame. The lateral suspen-

sion force, F , and yaw suspension moment, M , acting on
suspy

Fi
r suspz

Fi
truck frame i (i = 1 for front truck; i = 2 for rear truck) are shown

in Figure B.8 and are given by the following equations.

Truck Frame Lateral (i = 1 Front Truck;

i = 2 Rear Truck)
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Plan
View:

x

Figure B.8 Lateral Suspension Forces and Yaw Suspension
Moments Acting on Truck Frame
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Truck Frame Yav (i = 1 Front Truck; i = 2 Rear Truck)
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In equation (B-28) , T represents the coulomb friction yaw

moment acting on the truck frame due to interaction with the bolster.

For numerical purposes, the model of coulomb friction is modified to

include a linear viscous band at the origin, as follows:

T
0

for (VV -Vk
o

vvv for < T
0
/k

o

-T for (i> -ij < -T /k
o F r

B ~ o o

(B-29)

At low relative yaw rates between the bolster and truck frame, the

model assumes viscous damping occurs. At higher relative yaw rates,

the model assumes coulomb damping occurs with the frictional torque

saturating at the centerplate breakaway value. The coulomb friction
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characteristic of equation (B-29) is shown in Figure B.9. This method

approximates the frictional torque levels below
|

T
q |

(during ’’stopped

conditions") . The selection of the width of the linear viscous band is

important. Too wide a band will produce viscous damping results. How-

ever, if the band is too narrow, it will be missed during "stopped

conditions" by discrete integration.

A net yaw moment acts on the bolster due to the coulomb friction

element and due to the steering linkages of forced-steered vehicle

( i = 1 for front bolster; i = 2 for rear bolster) is shown in Figure

B.10 and is given by equation (B-30)

.

Bolster Yaw (i = 1 Front Bolster; i = 2 Rear Bolster)

designs. The yaw suspension moment, M acting on bolster i

M
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Figure B.9 Truck Frame/Bolster Yaw Suspension
Characteristic
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Plan
View:

XU

y

Front Truck
Frame

Front Bolster

Carbody

Rear Truck
Frame

Rear Bolster

Figure B.10 Yaw Suspension Moments Acting on Bolsters
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I

(B-30)

B.5.3 Carbody Suspension Forces and Moments

Suspension forces and moments act on the carbody due to the

secondary suspension system and due to the steering linkages of forced-

steered vehicle designs. It is convenient to consider the influence of

the front and rear trucks separately on the carbody suspension forces

and moments. Figure B.ll shows the effective lateral force, F ,

due to truck i(i = 1 for front truck; i - 2 for rear truck) . The

lateral suspension force and yaw and roll suspension moments are

given by the following equations.

Carbody Lateral

yaw moment , M , and roll moment, M

suspyci

, acting on the carbody

F

+
t 2ksy

+4 <H
l
+V (VH

3
)(k
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+k

s3
)]y

F
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Figure B.ll Suspension Forces and Moments Acting on
Carbody
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Carbody Yaw
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(B-32)

Carbody Roll

M = [-2k h2 - 2k d
2
]<p

suspx
ci

sy cs sz s c

+ [-2C h
2

- 2C d
2
]^

sy cs sz s c
(B-33)

The dynamics of the front and rear trucks (and bolsters) are

coupled due to connection via the carbody. In steady-state curving

conditions, the effect of coupling between the trucks is negligible

(for typical, secondary suspension parameters) . The suspension forces



and moments from the carbody acting on the front and rear trucks are

equal and opposite. In dynamic curving situations, such as curve entry

and exit, the forces and moments acting on the front and rear

trucks are not equal and opposite. The trucks do not behave indepen-

dently and, thus, a full vehicle model is required.

In the next section, the equations of motion are developed for a

full vehicle model.

B.6 Equations of Motion

The wheelsets, trucks, bolsters, and carbody are assumed to be

rigid bodies. The equations of motion are derived by direct applica-

tion of Newtonian mechanics. As discussed in Appendix A (Section A. 6),

the principles of linear and angular momentum give six scalar dif-

ferential equations for each rigid body. The equations represent

three dynamic force equilibrium equations and three dynamic moment

equilibrium equations.

B.6.1 Wheelset Equations of Motion

The equations of motion of a wheelset in single-point and two-

point contact at the flanging wheel are developed in Appendix A. For

a wheelset in single-point contact, the first order differential

equations of motion are given in equations (A-68) . For a wheelset

in two-point contact at the flanging wheel, the equations are given in

equations (A-70) . The wheelset suspension forces and moments are pre-

sented in Section B.5.1. The lateral suspension force and yaw suspen-

sion moment acting on the wheelsets are listed in equations (B-21) -
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(B-24); the vertical suspension force and roll suspension moment are

given in equations (B-25) and (B-26)

.

B.6.2 Truck Frame and Bolster Equations of Motion

In this section, the lateral and yaw equations of motion of the

truck frame and bolster are presented. The lateral equation is ob-

tained by applying the principle of linear momentum in the lateral

direction. Taking into account the lateral components of truck frame

and bolster weight (since the truck frame and bolster move together

laterally) and assuming small angles, the lateral equation of motion

is

:

TRUCK FRAME /BOLSTER LATERAL EQUATION

The truck frame yaw equation is obtained by applying the princi-

ple of angular momentum in the yaw direction. Assuming small angles,

the truck frame yaw equation of motion is:

TRUCK FRAME YAW EQUATION

+ F
suspy

p

(B-34)

(B-35)

Similarly, the bolster yaw equation of motion is:

BOLSTER YAW EQUATION

(B-36)
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The truck frame lateral suspension force, F , in equation (B-34),
F

the truck frame yaw suspension moment, M , in equation (B-35) , and
suspZj,

the bolster yaw suspension moment, M , in equation (B-36) are de-
suspZg

fined in equations (B-27) , (B-28) , and (B-30) , respectively.

B.6.3 Carbodv Equations of Motion

The lateral and yaw equations of motion of the carbody are presented

in this section. The lateral equation of motion is derived by applying

the principle of linear momentum in the lateral direction and accounting

for the contributions of the lateral suspension forces from the front

and rear trucks. The equation is:

CARBODY LATERAL EQUATION

W—[y - (r +h +h +h )<j) ]
= W (<p -

<p )

g c
K

o tp ts cs
YSE J

c
Y
d

Y
c

+ F + F
suspy

cl
suspy

c2

(B-37)

where the lateral component of the carbody weight is included and

small angles are assumed.

The yaw equation of motion is obtained by invoking the principle

of angular momentum in the yaw direction and including the influence

of the yaw suspension moments from the front and rear trucks. Assuming

small angles, the carbody yaw equation is:
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CARBODY YAW EQUATION

I
cz R

- V(l/R) ]
= M

suspz
+ M

Cl
suspz

C2

(B-38)

Similarly, the carbody roll equation of motion is derived by

applying the principle of angular momentum in the roll direction.

CARBODY ROLL EQUATION

I [i + Lj = M + M
ex c SE suspx^ suspx^2

(B-39)

The carbody roll angle, is the angular displacement about a longi-

tudinal axis passing through the carbody center of mass. When
<J>

= 0,

the carbody is parallel to the track plane.

The carbody lateral suspension forces, F
suspy

» in equation (B-37)

,

C i

the yaw suspension moments, M , in equation (B-38), and the roll
suspz

ci
suspension moments, M , in equation (B-39) are defined in equations

suspx^^

(B-31) , (B-32) , and (B-33) , respectively.

B.6.4 Modified Carbody Yaw Equation of Motion

In the development above, a detailed model of truck frame-bolster-

carbody interaction has been assumed which includes a degree of freedom

for bolster yaw motions. In the model, the carbody is connected to

each bolster by yaw suspension stiffness and damping elements. Physi-

cally, the stiffness and damping are provided by anchor rods which

offer large torsional resistance. The model also includes a (modified)
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coulomb friction element between the bolster and truck frame to repre-

sent the effect of the friction pads at the truck centerplate. The

truck frame-bolster yaw suspension characteristic is shown in Figure

B.12.

Since the secondary yaw stiffness between the carbody and bolster

*
is very large, it is reasonable to model the bolster as rigidly

coupled to the carbody in yaw. This simplifies the analysis by

eliminating a degree of freedom for bolster yaw. In the following, it

is assumed that each bolster yaws with the carbody, but displaces

laterally and rolls with the truck frame. For forced-steered vehicles,

this implies that the steering linkages are effectively connected to

the carbody.

Since each bolster yaws with the carbody, the bolster yaw angle,

ip
, is a function of the carbody yaw angle, ip

, given by
B c

£

ip = ip + —— (B-4Y
c - R

Substituting equation (B-40) into the bolster and carbody yaw equations

of motion and combining terms results in the following equation for

carbody/bolster yaw:

* 6
In addition to large secondary yaw stiffness (>5.0 x 10 ft-lb/rad),

the bolster weight ("1500 lb) is small (relative to truck frame and

carbody weights). Thus, the natural frequency of yaw oscillation of

the bolster ("15 Hz) is large relative to the truck frame and carbody

natural frequencies.
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coul

Figure B.12: Truck Frame/Bolster Yaw Suspension
Characteristic
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CARBODY/BOLSTER YAW EQUATION

C l5c
-
-s-

- V(1/R)J - M
i

+ M
suSpz

Cl
SuSpz

C2

(B-41)

where I is the yaw moment of inertia of the carbody and front and

rear bolsters (about a vertical axis through the carbody center of mass)

*
and M is the suspension yaw moment acting on the carbody and

suspz
ci

bolster due to interaction with truck i. The expression for the suspen-

*
sion yaw moment, M , is obtained by summing the suspension yaw

suspz^,^

moments on the carbody and bolster, i.e..

CARBODY/BOLSTER YAW

M

+ [±2VV+4G
3
(G^2+V (k

b2
+k

b3
) lyF

+ [4(Gi^ 2
+g

4
) Cg

4
-g

5
-g

6
) ( 1^ 3

) ]*F
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coul
(B-42)+T

B. 7 Numerical Methods

The equations of motion presented in Section B.6 describe the

dynamic behavior of the wheelsets, trucks, bolsters, and carbody of a

rail vehicle model as it traverses flexible, curved track. The equations

of motion are solved by digital integration using a fourth-order

Runge-Kutta scheme, which requires that the equations be in first

order form. In this section, the equations of motion of the full

vehicle model are cast in a form convenient for computer manipulation.

In a sense, this section represents a continuation of Section A. 7 of

Appendix A which presented the first order differential equations of

motion of a wheelset.

The full vehicle model is represented by 42 states: 20 states for

the 4 wheelsets, 8 states for the 2 trucks, 6 states for the carbody,

and 8 states for the rails. These states are listed in Table B.2.

Each wheelset has 2 states (1 degree of freedom) to describe lateral

• •

motions (y^, y ) 2 states to describe yaw motions » and a

state to represent spin speed (0 ) . In addition, the rails in contact
W X

with each wheelset have 2 states to describe lateral deflections

(y . , , y ). Each truck frame is characterized by 2 states for
raxl_ .

y rail .

Ri Li
• •

lateral motions (y , y ) and 2 states for yaw motions (^ , ip-.). The
Fi FI r X r X

carbody has 2 states for lateral motions (y , y ) , 2 states for yaw
U L*



motions ,
ip ) , and 2 states for roll motions (d> , (p )

c c c c

Assuming that single-point contact occurs at all wheels of the

vehicle, the first order differential equations of motion are given by

the following equations.

SINGLE-POINT CONTACT VEHICLE EQUATIONS

h — X
4

h = X
5

*
8

=
hi

*9
= X

12

= X
17

*16
= X

18

*19
= X

22

*20
= X

23

*26
= X

29

*27
= X

30

*33
= X

35

*34
ss X

36

*37
s X

40

*38
= X

41

*39
= X

42
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WHEELSET SPIN [EQUATION (A-51)

]

X
3

' f(x
x

. X
2

, ...» X^
2

JO.
o

II f(X
1

, X2- * * • » X
42

X
21

= f(X
1

, V ...» x
42

X
28

f(X
1

, V ...» X
42

WHEELSET LATERAL [EQUATION (A-45)

]

‘4
" f(x

1
. x

2
. . . . , X

42

11
= f(x

x
. V X

42

22
= f(X

1
, x

2>
X
42

'29
= f(X

1
, X

2
, . . . , x

42

WHEELSET YAW [EQUATION (A-52)

]

X
5

f(X
1

, X2’ “•» X
42

^2
= f(x

1
. V X

42'

X
23

= f(x
1

. V •••» X
42

X
30

f(X
1

, x
2

. ...» x
42

: RAIL LATERAL [EQUATION C

X
6

' f (x
x

. X2* ...» x
42

X
13

' f(x
1 , x

2 . •••» X
42

X
24

’ f (x
1

. V ...» x
42

0

X
31

* f(X
x>

X
2

, ...» x
42

(B-43)
Continued
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LEFT RAIL LATERAL [EQUATION (A-53)]

X
7

= f (X
1

, V * * * » X
42

II

<rH
•X f(x

x
, V ...» x

42

X
25

f(X
1

, X2’ ...» X
42

X
32

- f(X
x

, V CM
•••

TRUCK FRAME/BOLSTER LATERAL [EQUATION (B-34)

]

X
17

" f(X
1

, x
2

, x
42

)

X
35

f(x
x

, x
2

, ...» x
42

)

TRUCK FRAME YAW [EQUATION (B—35)

]

X*
1—
*

00

11 f(x
x

, x
2

, x
42 )

X
36

• f(x
1

, x
2

, x
42

)

CARBODY LATERAL [EQUATION (B—36)

]

X
40

f(x
x

, x2> • ••» X
42

)

CARBODY/BOLSTER YAW [EQUATION (B-41)]

X
41

“ f(x
1

, x
2

, x
42

)

CARBODY ROLL [EQUATION (B-39)

]

X^2 * ^2* •••» ^^ 2}

(B-43)

Continued
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The first order equations of motion listed in equations (B-43)

apply if single-point contact occurs at all wheels. If two-point con-

tact occurs at a wheel (or wheels), these equations must be modified.

For instance, if two-point contact occurs at the left wheel of the

leading wheelset, the following modification are introduced in

equations (B-43).

LEADING WHEELSET SPIN [EQUATION (A-62)

]

x
3

= f(x
x

, x
2

, ..., x
42

)

LEADING WHEELSET LATERAL [EQUATION (A-59)

]

x
4

= f(x
x

, x
2

, ..., x
42

)

LEADING WHEELSET YAW [EQUATION (A-63)

]

(B-44)

x_ = f(x
x

, x
2

, ... x
42

)

LEADING RIGHT RAIL LATERAL [EQUATION (A-65)

]

X
6

= f(X
x

, X
2

, ..., X
42

)

Also, the equation for the leading left rail lateral displacement, X^,

is eliminated. State X^ is a known function of X^ due to the contact

constraint relation (A-56) . Equations (B-43) are correct except for

these modifications. If two-point contact occurs at other wheels,

similar replacements are made.
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TABLE B.2: STATES OF THE RAIL VEHICLE MODEL

FRONT TRUCK, LEADING WHEELSET FRONT TRUCK, TRAILING WHEELSET

X
1

s
ywl

X
3

“ yw2

X
2

-
*.l

X
9

=
^w2

X
3

SB

9„X
X
10

=
®w2

X
4

=
hi X

11
= yw2

X
5

S3

hi X
12

=
<N|

•W5

X
6

= y
""n

X
13

=
yrail

R2

*7
=

yrail
Ll

X
14

y
raili2

FRONT TRUCK

X

X

X

X

15

16

17

18

FI

FI

FI

FI
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REAR TRUCK, LEADING WHEELSET REAR TRUCK, TRAILING WHEELSET

*19
= yw3

x
26

— yw4

X
20

=
*w3

X
27

—

X
21

=
®w3

X
28 ®w4

X
22

= Xw3
X
29

— yw4

X
23

=
**3

X
30

=
*v4

X
24

= ^rail
R3

X
31

=
yrail

R4

X
25

=
7rail

T.3

X
32

= y-^4

REAR TRUCK CARBODY

X
33

= yF2
X
37

II
y
c

X
34 ’^F2

X
38

—
*e

X
35

= yF2
X
39

=

X
36 ^F2

X
40

= y
c

X
41

s

X
42

=
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In typical steady-state curving conditions, flanging occurs at

the leading outer wheel of the vehicle (Tor practical vehicle suspen-

sion parameters and for negotiation of curves >2.5°). Thus, for wheel/

rail profiles with steep flanges, such as new AAR 1 in 20 wheels, two-

point contact develops at the leading outer wheel. Single-point con-

tact occurs at all other wheels. In dynamic curving situations,

flanging can occur at any wheel or combination of wheels . For a vehicle

with new wheel profiles, two-point contact can develop at the outer or

inner wheels of any of the wheelsets, especially during violent curve

entry and exit, during negotiation of reverse curves, and during

hunting.

For each wheelset of the vehicle, 3 distinct possibilities of

wheel/rail contact exist. The possibilities are: (1) single-point

contact at both wheels, (2) two-point contact at the outer wheel and

single-point contact at the inner wheel, or (3) two-point contact

at the inner wheel and single-point contact at the outer wheel. Thus,

for a truck with 2 wheelsets, a total of 9 wheel/rail contact possi-

bilities can be identified, as illustrated in Figure B.13. For a full

vehicle with front and rear trucks, 81 contact combinations are

possible. A separate set of vehicle equations of motion exists for

each combination.

B.7.1 Dynamic Curving Program

The nonlinear vehicle equations of motion are numerically inte-

grated to provide time histories of (1) all the state variables, (2)

the wheel/rail contact forces, and (3) the contact patch work. A
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Key: | 1 11 Single-Point Contact Outer
and Inner Wheels.

|-H 21 Two-Point Contact Outer Wheel;
Single-Point Contact Inner Wheel.

|—1 12 Single-Point Contact Outer Wheel;
Two-Point Contact Inner Wheel.

Figure B.13 Wheel/Rail Contact Possibilities for

WTieelsets of a Truck with New Wheels.
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variable time-step, fourth order Runge-Kutta algorithm is employed

for the integration. The dynamic curving analysis is coded in a

FORTRAN program, entitled DYCURV (DYnamic CURVing) . A flowchart of

the program, the layout of the "equation" subroutines, and approp-

riate descriptions of the subroutines appear in Figures B.14, B.15,

and Table B.3, respectively. Program DYCURV automatically determines

the wheel/ rail contact condition at each wheel. The program solves

the single-point contact vehicle equations and evaluates whether or

not a correct solution has been obtained. If a two-point contact

wheel/rail profile is being used and the net wheelset lateral excur-

sion at any wheel equals the flange clearance, the solution is not

correct. Then, without incrementing the time-step, a different

(appropriate) set of vehicle equations is solved and, again, checked

for consistency. A consistent (i.e., correct) two-point contact

solution is obtained if positive normal forces are predicted at the

two contact points at each flanging wheel.

Program DYCURV requires a very small time-step generally for

numerical stability. Previous dynamic curving analyses [7, 10] have

suggested a time-step of 0.00075 sec. This value is used in program

DYCURV when tread contact occurs at all wheel/rail interfaces. When

flange contact occurs at any wheel the program automatically reduces

the time-step to 0.0005 sec. Thus, for a 1 second simulation in which

flange contact occurs, 2,000 time-step iterations are required. The

computer time required on a DEC VAX 1178 is about 1 CPU minute for a

1 second simulation, at a cost of $3. 75/CPU minute at high priority.
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Start

Stop

Figure B.14 Flowchart of Dynamic Curving Program
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B.15 Layout of Equation Subroutines



TABLE B . 3 SUBROUTINE DESCRIPTIONS FOR DYNAMIC CURVING PROGRAM

CARBODY Sets up first order differential equations of
motion of carbody.

CHECK Checks consistency of solution (i.e., checks
wheelset lateral excursions and signs of forces
to determine if single-point or two-point con-
tact occur at each wheel); if inconsistent,
changes contact condition.

CURVE Calculates track geometry: track curvature,
superelevation angle, and rates.

EQN Sets up appropriate first order differential
equations of motion of vehicle (depending on

contact conditions at wheels)

.

FCREEP Determines creep forces and moment using "heuristic' 1

scheme (Linear Kalker with Vermeulen-Johnson
saturation)

.

FSUSP Calculates suspension forces and moments acting
on wheelsets, trucks, and carbody.

FWIPT Calculates wheel/ rail forces (creep and normal)
using iterative approach assuming single-point
contact occurs at both wheels.

FW2PTL Calculates wheel/rail forces (creep and normal)
using iterative approach assuming two-point con-
tact occurs at left wheel and single-point contact
occurs at right wheel.

FW2PTR Calculates wheel/rail forces (creep and normal)
using iterative approach assuming two-point con-
tact oc.curs at right wheel and single-point contact
occurs at left wheel.

INITIAL Reads input data: system parameters, initial con-
ditions, and wheel/rail geometry.

OUTPUT Prints/plots output data: states, wheel/rail
forces, contact work.

SOLVE Standard fourth order Runge-Kutta integration
routine.

TABLE Interpolates wheel/rail contact geometry data
from table.

TRUCK Sets up first order differential equations of

motion of truck.

WHGEOM Determines wheel/rail contact geometry for net
lateral excursion.
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TABLE B.3 Continued

WS1PT Sets up wheelset and rail equations of motion assuming
single-point contact occurs at both wheels.

WS2PT Sets up wheelset and rail equations of motion assuming
two-point contact occurs at one wheel and single-point
contact occurs at other wheel.

If the program is to be used for extensive parametric studies,

optimal on-flange and off-flange time-steps should be determined.

These values will be a function of the "stiffness" of the system of

equations being integrated.
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